节点文献

长江干线船撞桥事件机理及风险评估方法集成研究

Emergency Mechanism and Integration Methods of Risk Assessment for Ship-Bridge Collision in the Yangtze River

【作者】 谭志荣

【导师】 严新平; 刘明俊;

【作者基本信息】 武汉理工大学 , 载运工具运用工程, 2011, 博士

【摘要】 随着长江干线跨河桥梁日益增多和长江黄金水道建设的快速发展,桥区水域的船舶通航安全问题日益突出。因此,船撞桥事件的机理分析和风险评估研究显得日益重要。目前,船撞桥研究多集中在船撞概率模型和船撞力有限元计算两个方面,侧重于船舶与桥墩的相互关系。整体上,现阶段的桥梁工程船撞风险研究仍处于参照现行规范的被动防护设计阶段,基于风险的主动防船撞研究尚处于初期研究阶段。本选题正是在长江干线跨河桥梁工程集中建设和加强桥区通航安全管理的背景下,对船撞桥事件机理展开研究,探索适合长江干线桥梁船撞风险评估的论证技术。本文以复杂性科学理论为手段,运用事故致因理论、模糊层次分析法和集成理论等,对船撞桥事件机理和风险评估方法等内容进行了多角度的研究和论证。全文内容概括如下:(1)提出和定义了船舶航行过桥系统(HSCM, "Human- Ship- Channel-Management")的概念。本文在详细分析国内外相近领域船撞桥(SBC, Ship-bridge collision)研究内容基础上,提出基于系统安全的船舶航行过桥系统。其次,确立了船舶航行过桥系统的构成要素,并阐述了长江干线船舶航行过桥系统的基本特征。(2)阐明了HSCM的风险辨识因素,提出和构建了三维耦合致因机理模型。基于系统工程理论,将管理因素作为人因素的一个组成部分,论述了HSCM系统中产生SBC风险因素的识别方法。在分析单因素、双因素和三因素耦合致因机理以及现有船舶偏航和失控漂移理论基础上,提出了三维轨迹交汇致因机理,并建立了耦合致因模型。该模型揭示了HSCM的因素之间的内在耦合关系,进一步的SBC数据统计证实:通航桥孔跨距偏小是导致桥梁易发生SBC的主要风险源。(3)在桥梁通航风险评估方面,开展了长江干线桥梁通航风险源数据库的统计工作;结合桥梁通航环境复杂性特征,建立了HSCM的等级全息模型。运用等级全息建模方法对桥梁船舶通航环境复杂系统进行了风险识别,对HSCM进行复杂性分析后指出:气象环境等自然条件和桥梁因素数据危险源;人为因素和管理因素属于事故隐患;船舶因素和桥区航道属于脆性源。HSCM的脆性联系符合层次脆性关系。在运用复杂性理论对HSCM脆性定义的基础上,明确了系统的脆性源和脆性接受者,建立了HSCM脆性结构。运用模糊层次分析法,通过苏通长江大桥的实例分析了基于FAHP的系统脆性风险评价,该评价方法构建了苏通长江大桥的系统脆性层次性指标。评价结果表明:影响苏通大桥的主要脆性因子是船舶交通流和自然条件。(4)船舶交通流是桥区SBC致因复杂性产生的直接诱因。以荆州长江大桥为例,本文运用数理统计方法对船舶到达规律进行了实证研究,指出船舶到达桥区符合泊松分布,船舶到达间隔时间符合二次分布。结合桥区航道数据建立了基于优先级的船舶避让规则,应用计算机模拟实现了船舶过桥的三维动态模拟。模型将桥墩视为静止船舶,以船舶交通流组成单元之间无碰撞为目标,在满足船舶顺利过桥的前提下,对不同类型船舶过桥进行了优化调度。在简化船舶交通流的情况下,建立了基于碰撞势态的直航路船撞桥概率简化模型。该简化模型能够较好地解释长江干线船撞桥事故在洪水期、航道宽度窄和桥墩形状等因素条件下影响事故频度的事故机理。(5)构建了基于风险设计的桥梁通航论证集成综合评价方法。在桥梁通航净宽尺度设计阶段,提出了通航论证技术框架。以武汉鹦鹉洲长江大桥通航风险评估为实例,探讨了基于规范设计、漂移计算和操纵模拟在通航论证中的具体应用,验证了桥梁工程领域风险评估的技术方法。最后,由于长江干线桥梁所处河段的差异性,在进行桥梁通航净宽尺度论证和风险评估时,需要针对具体问题选择合适的评估论证技术。

【Abstract】 he safety passage of vessels under bridges becomes a key issue in the Yangtze River with more and more bridges coming up as well as the booming shipping industry. As for ship-bridge collision risk, it is necessary to study the complex causing mechanism and integration methods of risk assessment from different angles. So far, the collision probability modeling and impact calculation are two main directions in Ship-bridge collision (SBC) research field. All in all, the current research focus on passive study on the rule-based bridge clearance design and pier collide prevention. Recently, risk-based design comes to this field. Thus, ship-bridge emergency event is chosen as a research object by this paper, which aims to find the complex causing mechanism and risk assessment methods from an active prevention point of view. In this research, the theory and methodologies of science of complex are applied, such as accident causing theory, AHP methodology and integration theory.First of all, concept and structure of Complex system of "Human- Ship-Channel-Management (HSCM)" is put forward as well as defined by this dissertation based on Yangtze River situation. It set up a simplified HSCM system based on systematic safety. Secondly, it defined key elements of HSCM system and characters of ship across bridge, which integrated a lot of analyzing result of similar researches.A three-dimensional orbit intersecting Causes-Results Theory is promoted to explain the risk identification system. In accordance with Systematic Engineering Theory, risk elements is utilized to illuminate mechanism of SBC with single-factors, double factors and three-dimensional factors Causes-Results Theory by combining ship drifting theory, which extend the ship deviation theory.With Hierarchal Holographic Modeling (HHM) method, the SBC causing HHM is set up in accordance with a navigational risk resource data of Yangtze River for the further research. The HSCM system is a typical brittle system. By defining the brittleness source and system structure, the fault tree is used to identify the causing factors. Then a systematic brittleness assessment is studied by using FAHP method with the survey data of Sutong Yangtze Bridge.The ship traffic flow is one of the fundamental causing factors of SBC. As for ship arriving principal, a Poisson distribution is proved by the Jingzhou Yangtze bridge ship traffic data observation. The pier of bridge is considered as a relative static ship and therefore a simplified ship’s avoiding collision model is set up based on priority level. By using computer simulation, an active ship passing bridge channel is demonstrated under the ship traffic flow management. In this case, a straight-channel SBC probability modeling is brought out with a ship-ship impact distribution.Method integration is applied on the bridge navigable assessment on risk-based design aspect. Bridge clearance is a key brittleness factor, therefore, a combination method such as rule-based design; drifting calculation and navigation simulation are put into use in the Wuhan Yingwuzhou Yangtze Bridge navigable risk assessment. As for various channel, it is necessary to verify the effectiveness and applicability of methods.

节点文献中: