节点文献

Tm3+/Yb3+共掺材料制备与激光性能研究

Preparation and Laser Performance Research of Tm3+/Yb3+-codoped Materials

【作者】 黄庆捷

【导师】 王青圃;

【作者基本信息】 山东大学 , 光学工程, 2011, 博士

【摘要】 21世纪是信息时代,建立高速、大容量的全光通信网络成为新的研究目标。波分复用(WDM)技术的发明以及20世纪90年代研制成功的掺铒光纤放大器(EDFA),使得信息大容量、超长距离传输成为可能。传统的EDFA以石英为基质材料,主要工作在C波段(1530-1560nm)。但随着互联网不断的发展,目前已不能满足系统要求。新一代光纤通信网络对S波段(1450nm-1520nm)光放大的需求日渐升高,但是以Er3+离子为发光中心的EDFA无法完成这一波段的光放大,因此研究其他稀土元素的发光特性,进而研制新型S波段的光纤放大器显得尤为重要。现有的光纤主要以硅化物做为基质材料。相比于硅化物材料,碲化物材料在稳定性、耐腐蚀性和稀土离子可溶性等多方面具有优势,然而此方面的研究还相对较少。本研究首先制备了多种掺Tm以及Tm与其他稀土离子共掺的碲化物材料,通过实验获得了Tm3+离子在Tm与其他稀土离子共掺材料中的光谱特性,并对其进行了理论分析。随后制备了Tm/Yb共掺光纤,测试了其光学性能,并搭建了谐振腔增强型光纤放大器平台,为进一步研制高性能掺铥光纤激光器和放大器奠定了基础。并且在研究中发现Tm/Yb共掺材料具有成为优秀蓝光激光材料的潜质,研究了Tm/Yb共掺材料的激光性能。论文的主要研究工作概括如下:(1)制备了单掺Tm的碲化物玻璃,制备了多种组分不同的Tm与Yb,Er, Nd等稀土元素共掺的碲化物玻璃,制备了Tm/Yb共掺的碲化物光纤。为测试Tm在稀土元素掺杂的碲化物材料中的特性做好了准备。(2)对制备的碲化物材料进行了荧光光谱研究。分别采用980nm、808nm半导体激光器为泵浦源,泵浦稀土掺杂的碲化物材料,测得了不同稀土离子掺杂的碲化物材料的荧光光谱。首次发现了Tm在Tm/Yb共掺材料中890nm荧光发射,1370nm荧光产生同时原本属于Tm特征谱线的1470nm荧光消失的现象。对产生的谱线进行了分析。并且在Tm/Yb共掺的碲化物玻璃中观察到明显的蓝光,证实了能级的上转换。(3)利用J-O理论计算了掺Tm碲化物玻璃与不同组分的Tm/Yb共掺碲化物玻璃的光谱特性。首次得到了Tm/Yb共掺碲化物玻璃的光谱参数。通过理论计算,分析解释了在Tm/Yb共掺玻璃的荧光测试中出现的各种现象,表明Yb离子在共掺材料中比例十分重要,会影响到材料中Tm离子的发光特性,这对实现S波段光放大至关重要。(4)研究了Tm/Yb共掺碲化物光纤的特性,通过合理设计解决了碲化物光纤易断裂以及不能与普通硅光纤直接熔接的问题。搭建了Tm/Yb共掺谐振腔增强型光纤放大器平台,进行了谐振腔增强型光纤放大器的研究。(5)对Tm/Yb共掺碲化物材料激光特性进行了研究,进行了Tm/Yb共掺材料蓝光激光实验,研究表明Tm/Yb共掺晶体材料有望成为优秀的蓝光激光材料和人眼安全的1.5-2μm激光材料。开始进行生长Tm,Yb:KLu(WO4)2晶体。本论文主要创新点如下:1:制备了多种组分不同的Tm与Yb,Er, Nd等稀土元素共掺的碲化物玻璃,制备了Tm/Yb共掺的碲化物光纤。对Tm在稀土元素掺杂的碲化物材料中的特性进行了研究。2:首次发现了Tm离子在Tm/Yb共掺材料中890nm和1370nm处发射的明显荧光,并且发现在1370nm荧光产生同时原本属于Tm离子本征发射谱线的1470nm荧光的消失,根据Tm,Yb能级结构对此现象进行了分析解释。3:首次理论计算了Tm离子在Tm/Yb共掺材料中的光谱参数,发现共掺材料中Yb离子的存在影响了Tm离子的能级结构,并印证了Tm离子新荧光产生和原有本征谱线消失这一现象。4:首次发现Tm在Tm/Yb共掺碲化物材料中的发光特性会随材料中Tm,Yb掺杂比例不同而发生改变,并对此进行了解释。5:准备加工了Tm/Yb共掺碲化物光纤器件,搭建了谐振腔增强型光纤放大器平台,并进行S波段光放大的测试。6:荧光测试得到了Tm/Yb共掺材料的480nm上转换蓝色荧光,首次提出了将Tm/Yb共掺钨酸盐晶体作为蓝光激光介质,并开始生长Tm/Yb共掺钨酸盐晶体。

【Abstract】 The 21 st century is the era of optical communication, high-speed, high-capacity optical communications networks has become a new research target. The invention of wavelength-division multiplexing (WDM) and the Erbium-doped fiber amplifier (EDFA), which is invented in 21st nineties, make the transmission of information in long distance and great capacity possible. Conventional Erbium-doped fiber amplifiers is silica-based, which work in the C-band (1530nm-1565nm). However, with the further development of the internet, they cannot meet the requirement of the system any more. New generation fiber communication system has been paid more attention to light amplification in the S-band (1450nm-1520nm). But it is impractical to achieve the optical amplification in this Band by EDFA. Consequently, investigating other rare earth ions’luminescence properties to develop the new S-Band fiber amplifier is becoming increasing important.Nowadays, most fibers are silica-based. Compared with the silica-based materieals, telluride materieals are more stable; more corrosion-resistant; and have higher ions solution. However, there is little research in this field. In this paper, Tm-doped telluride materieals and codoped Tm with other rare earth ions materieals are prepared. The luminescence properties of Tm ions in the codoped Tm with other rare earth ions materieals are got by experiment, and the theoretical analysis is taken. Tm/Yb codoped fiber is prepared; optial properties of the fiber are analyzed. Moreover, a fiber amplifier, which in cavity resonator form, is set up. This work has laid a solid foundation for the future research of high performance Tm doped fiber laser and fiber amplifier. In this work, Tm/Yb co-doped material show its good potential in blue laser, the laser performance of Tm/Yb co-doped material also been investigated. Main works of the paper are summarized as follows:(1) Tm-doped telluride glass and codoped Tm with other rare earth ions telluride glass are prepared; Tm/Yb codoped telluride fiber is prepared. That is the foundation of properties test of Tm in codoped Tm with other rare earth ions telluride glass.(2) The luminescence properties of the telluride materials have been investigated. 808nm and 980nm diode laser are used as pumping source, respectively. Under the laser pumping, the luminescence spectrums of the telluride materials in different codoped ions are record.890nm fluorescence is the first time found in Tm/Yb co-doped material, and 1370nm fluorescence is also found in Tm/Yb co-doped material with the dispearence of 1470nm fluorescence, which is the characteristic fluorescence of Tm ion. The resulting spectrums are analyzed. Obvious blue light is generated in Tm/Yb codoped glass and upper level energy conversion is confirmed.(3) Using J-0 theory theoretically analyzed the optical properties of Tm-doped telluride materieals and Tm/Yb co-doped telluride materieals. The optiacl parameters of Tm/Yb co-doped telluride glass have been got for the first time. The fluorescence performance of Tm/Yb co-doped telluride glass has been explained through the theoretical calculation. The calculation indicates the ratio of Yb in materieal is very important. This conclusion is very important to achieve S-band amplification.(4) The properties of Tm/Yb co-doped telluride fibers have been investigated. Approaches are suggested for solving frailty of telluride-based fibers and difficulty of splicing with conventional silica-based fibers. Besides, the placement and connection of telluride-based fibers is investigated. A fiber amplifier, which in cavity resonator form is set up. The experiment of S-band fiber amplifier is taken.(5) The laser properties of Tm/Yb co-doped telluride materieals have been investigated. The experiment indicates the Tm/Yb co-doped crystal could be a good laser materieal in blue color and inl.5-2^,m eye safe laser. The Tm,Yb:KLu(WO4)2 crystal is growing.The main innovations of this dissertation are as follows: 1. Tm-doped telluride glass and codoped Tm with other rare earth ions telluride glass are prepared; Tm/Yb codoped telluride fiber is prepared. Properties of Tm in codoped Tm with other rare earth ions telluride materials are investigated.2. For the first time,890nm fluorescence and 1370nm fluorescence are found obviously in Tm/Yb co-doped materials. Furthermore, with the appearance of 1370nm fluorescence, the 1470nm fluorescence, which is the characteristic fluorescence of Tm ion, is dispeared. The reasons of these phenomenons are analyzed based on Tm, Yb energy structure.3. For the first time, the optiacl parameters of Tm ions in Tm/Yb co-doped telluride glass are calculated. The calculation indicate the Yb ions in Tm/Yb co-doped glass affect the energy structure of Tm ions, this is confirmed with the new fluorescence appeared and the characteristic fluorescence of Tm ion disappeared.4. For the first time, it is found the fluorescence properties of Tm in Tm/Yb codoped telluride materieals will change with the Tm, Yb ratio diffenence, and this phenomenon is analyzed.5. Tm/Yb codoped telluride fiber is prepared. A fiber amplifier, which in cavity resonator form, is set up. The experiment of S-band fiber amplifier is taken.6.480nm blue up-convertion fluorescence is recored in fluorescence test on Tm/Yb co-doped material. For the first time, Tm,Yb:KLu(WO4)2 crystal is choscen as the blue laser material, and the Tm, Yb:KLu(WO4)2 crystal is under growing.

  • 【网络出版投稿人】 山东大学
  • 【网络出版年期】2011年 11期
节点文献中: