节点文献

高精度电子组装设备中智能材料驱动器的建模与控制研究

Modeling and Control for Smart Materials Based Actuators in High-precision Electronic Manufacture Equipment

【作者】 杜娟

【导师】 胡跃明;

【作者基本信息】 华南理工大学 , 控制理论与控制工程, 2010, 博士

【摘要】 精密电子组装生产线是电子信息制造业的关键工序,新型电子元器件朝微纳米级的高密度多引脚封装的方向不断发展,国内基于视觉的优化控制等重要共性理论问题和实现技术的研究还尚处于起步阶段。基于智能材料的驱动器以其高精度等优良特性得到广泛应用,同时,如何设计控制策略来提高基于智能材料的微纳级驱动器的定位精度也逐步得到了重视。因此,如何利用智能驱动器来提高定位精度成为了精密电子组装技术的探索问题之一。表面贴装技术生产线的核心思想是采用智能视觉检测和定位算法、高精度运动/力控制算法以及工业机器人技术达到快速准确的组装生产目的。随着下一代元器件向微纳封装方向发展,传统的模板匹配进行检测和运动减速来保证终端组装头精度方法已无法适应高精高速度要求。于是,新型智能材料传感器、驱动器的优良特性——精度高、反应速度快、应力大的优势得到了得到了世界各国学者的广泛重视,逐渐将其应用在电子组装设备上的高精度定位方面。随着对定位精度要求的不断提高,特别是纳米级加工定位的应用中,其回滞特性存在已经严重限制了系统性能的提高,如何描述智能材料驱动器中的回滞特性,并在此基础上通过控制策略来有效抑制回滞的影响成为了目前精密控制领域的主要目标。本文的主要内容是:1、表面贴装设备控制系统的重要部分是驱动及伺服定位系统。随着电子芯片引脚间距的细小化,对定位精度的要求越来越精确。需要建立相应的微位移智能材料传感器的回滞等特性的动力学模型进行协调与精确控制来实现高精度定位的目标。2、重点分析了智能材料驱动器,包括压电陶瓷驱动器、磁致伸缩制动器和形状记忆合金等在内的工作原理及输入输出之间的回滞特性。由于智能材料的多样性,使得基于智能材料驱动器的输入输出特性中的回滞呈现多样性,除了多值性以外还存在次滞环、饱和特性、非对称特性等,这使得如何精确描述回滞特性成为了研究此类基于智能材料驱动器的装备系统控制的首要任务。3、分析了目前用于表征回滞的各种模型,主要分成两类,一类是基于算子型的回滞模型,主要有Preisach模型、Prandtl-Ishlinskii模型和KP模型。另一类是基于微分方程型的回滞模型,其中重点分析了Backlash-like模型和Duhem模型。4、针对智能材料驱动器中存在的回滞多样性,以形状记忆合金驱动器为研究对象,针对其存在的饱和回滞特性,采用广义Prandtl-Ishlinskii模型来表征这一类回滞非线性,并在此基础上提出了一种无需构造逆回滞的鲁棒自适应控制方法。5、针对智能材料驱动器中的饱和特性,主要采用Duhem模型来表征未知回滞非线性。结合回滞模型,提出了一类无需构造逆回滞的鲁棒控制策略。在保证系统全局稳定的基础上,所提出的方法实现了对回滞的有效削弱并保证了理想的跟踪精度。6、将智能材料驱动器运用到定位控制的伺服系统中,实现了智能材料驱动器在电子组装系列设备的试验平台构建。本课题在国家自然科学基金重点基金项目(60835001)“面向精密电子组装生产线的关键视觉检测与优化控制问题”、广东省教育部产学研结合项目(2009A090100027)“高端全自动表面贴装成套装备研发及产业化”和华南理工大学中央高校基本科研业务费专项资金(2009ZZ0005)“基于智能驱动器的高精密仪器系统控制研究”的支持下完成。

【Abstract】 Precision electronic assembly is one of the key procedures in the electronic information manufacture. The development of the novel electronic components has been developed to the multiple-pin direction. The research of the theory and technique for the optimization control based on vision is still in the primary stage. The smart materials based actuators have been applied widely because of their excellent properties, such as high precision. Also, how to design the corresponding control approaches to improve the positioning precision of the nano-smart material based actuators has attracted more attention during these years. Therefore, the improvement of the positioning precision of the precision electronic assembly by using smart-material based actuators has been one of the key issues in this field.The idea of the surface mounting technology is to use smart vision detection, positioning algorithms, high precision control algorithms and industrial robot technique achieving fast and precise assembly. With the nano assembly development of the next generation component, the classical template matching for detection and motion deceleration to ensure the terminal mounting head cannot match the high speed and high precision requirements. Therefore, novel smart-materials based sensors and actuators have been paid attention because of their excellent characteristics, such as high precision, fast response speed and large stress, and have been adopted in the high precision of the electronic assembly. With the improvement of the positioning precision, especially the nano-stage positioning application, the hysteresis existing in these actuators limits the improvement of the system performance. How to describe the hysteresis characteristics in the smart materials based actuators and design the related controller mitigating the effects caused by the hysteresis effectively become one of the main tasks of the precision control field.The contents of this dissertation include1. The main portion of the surface mounting technology control system is the servo-controlled positioning system. With the fineness of the lead pin pitch in the IC chip, the positioning precision needs to be more accurate than before. In order to achieve nano positioning precision, it is necessary to construct the related hysteresis model describing the hysteresis properties in the smart materials-based actuators for concerted and precise control.2. The working principle and the related hysteresis characteristics of these smart material based actuators, such as piezoelectric actuators, magnetostrictive actuators and shape memory alloy actuators are analyzed. Due to the multiform of the smart materials, the hysteresis existing in these smart materials actuators have some special properties, for example, except the multi-values, minor loop, saturation property and asymmetric property etc. existing in these smart materials actuators. Addressing this issue, describing the hysteresis accurately becomes one of the main tasks for the smart materials actuators based assembly control.3. The hysteresis models utilized to describe hysteresis characteristics are analyzed. Considering the modeling principle, these models can be roughly classified as operator-based hysteresis model, such Preisach model, Prandtl-Ishlinskii model and KP model, and differential equation-based hysteresis models, such as Backlash-like model and Duhem model.4. Focusing on the saturated hysteresis in the smart materials actuators, a generalized Prandtl-Ishlinskii model is adopted to represent the hysteresis characteristics in the shape memory alloy actuators. Based on the generalized Prandtl-Ishlinskii model, a robust adaptive control approach without construction of the hysteresis inverse is proposed.5. Still focusing on the saturated hysteresis in the smart materials actuators, Duhem model is adopted to describe the saturated hysteresis characteristics in the shape memory alloy actuators. By exploring the property of Duhem hysteresis model, another robust control approach without construction the hysteresis inverse is proposed. The proposed method mitigates the effects caused by the hysteresis effectively and ensures the tracking precision.6. These smart materials based actuators are adopted in the positioning control of servo system experiment stage as the primary application of the smart materials based actuators in the electronic assembly devices.The dissertation is supported by the National Natural Science Foundation of China (No. 60835001, The research on the key vision detection and optimal control oriented to the assembly line), Project of Product-Education-Research Association of Guangdong Province and Ministry of Education(2009A090100027)“Research and industrialization of hight-level full-automatic surface mounting assembly”and by the Fundamental Research Funds for the Central Universities, SCUT under Grant 2009ZZ0005.

节点文献中: