节点文献

利用苯并咪唑-(4,5,f)-并-(1,10)-邻菲罗啉和芳香羧酸配体控制超分子配位聚合物的自组装

Self-Assembly of Supramolecular Coordination Polymers Controlled by Using 2-Phenyl-1H-1, 3, 7, 8-Tetraazacyclopenta[L]-Phenanthrene and Aromatic Acid Ligands

【作者】 王湘成

【导师】 闫永胜;

【作者基本信息】 江苏大学 , 工业催化, 2010, 硕士

【摘要】 随着有机化学和无机化学的快速发展,配位化学成为了合成新型固态材料的一个焦点。研究者合成了越来越多的新的配位聚合物,剑桥晶体数据库CCDC也收录了越来越多的晶体结构。同时,随着超分子结构研究的深入,含金属的超分子配位聚合物得到了快速发展。新型超分子结构不仅仅具有迷人的规整结构,更重要的是,其在光、电、磁等方面具有潜在应用价值。超分子配位聚合物的性质主要依赖与晶体结构,每个晶体结构具有其独特的性质。因此,控制超分子配位聚合物的结构和维度是非常重要的。然而,对控制配位超分子结构仍然缺乏一个非常有效的方法。在本篇论文中,我们选择了苯并咪唑-(4,5,f)-并-(1,10)-邻菲罗啉(PTCP)作为多氮配体。这个配体包含五个芳香环,四个氮原子,其中两个来自邻菲罗啉的配位给体N,另外两个来自咪唑部分。配体PTCP可以与大多数的金属离子进行配位,同时,配体中的咪唑单元既是氢给体,也是氢受体,所以是一个构建配位超分子结构的优良配体。同时,我们选择芳香多羧酸配体作为桥联配体。芳香羧酸配体上的氧原子能够给电子,可以和大多数金属原子进行配位。我们利用水热方法合成并通过红外光谱、元素分析、热重分析、X-射线单晶衍射和固态光致发光光谱来表征了19个新的配位聚合物和超分子配位聚合物:[Eu2(BDC)3(H2O)].(H2BDC=邻苯二甲酸)(1);[Pb3(BTC)2(H2O)]n(BTC=均苯三甲酸)(2);[Pb3(BTC)2(H2O)2]n·n(H2O)3.5(3);[Ni2(PTCP)4(SO4)(H2O)3][(SO4)(H2O)4.5] (4);[Fe(PTCP)3][(SO4)(H2O)7](5);[Co2(PTCP)2(3,5-NSYS)2(H2O)2](3,5-H2NSYS=3,5-二硝基水杨酸)(6);[Zn(PTCP)2(5-SSYS)(H2O)](5-H2SSYS=5-磺基水杨酸)(7);[Pb2(PTCP)2(BTC)2] (8);[Ln2(PTCP)2(m-BDC)3]n·0.5n(H2O) (Ln=Ce,Pr,Nd,Sm, Eu,Tb,Dy,Tm)(9-16);[Co(PTCP(LBSS)(H2O)2]n·n(H2O)(H4LBSS=3,3’,4,4’-联苯四甲酸)(17);[Pb(PTCP)(PYDC)]n·0.5n(H2O)(H2PYDC=吡啶-2,5-二甲酸)(18);[Cu(PTCP)(PTA)]n(H2PTA=对苯二甲酸)(19)。配合物1~3是新的通过芳香羧酸和金属离子构筑的2D或者3D的无机有机聚合物结构。超分子配位聚合物4和5是通过单个PTCP配体和无机盐形成的OD结构,并形成了3D的配位超分子结构。超分子配位聚合物6-19是通过PTCP和芳香羧酸作为混合配体构建的。所以这些配合物是从0D或者1D形成的2D或者3D的超分子结构。在本篇论文中,我们初步实现利用PTCP配体和芳香多羧酸来控制配位超分子维度的目标:(1)由于多芳香羧酸配体的可延展性,所以,当利用单个的芳香多羧酸作为有机配体,可以形成高维的结构(2D或者3D);(2) PTCP具有单个配位点,并且具有良好的氢键位点,所以,当利用PTCP和其类似的配体作为单配体,一般可以形成0D的结构。同时由于PTCP具有氢键位点,所以可以通过氢键增长成高维(2D或者3D)结构;(3)由于PTCP的巨大的空间位阻作用和多芳香羧酸的扩展作用,当选用PTCP和多芳香羧酸配体作为混合配体时,一般形成0D或者1D多核结构,并且自组装成3D的超分子结构。在大多数情况下,多芳香羧酸配体作为桥联配体与金属相连,而PTCP作为位阻配体,是构建氢键网络的关键之处。最终超分子结构是1D还是2D,决定于芳香羧酸的空间位阻和延展性。(a)当选用单羧酸作为芳香羧酸配体(例如水杨酸)和空间位阻大的配体PTCP混合可以构建OD结构,并通过氢键和芳香堆积作用形成3D超分子结构。(b)当选用空间位阻较大的多羧酸配体(例如间苯二甲酸,吡啶-2,5-二甲酸,均苯三甲酸等)与具有大空间位阻和多氢键位点的单配位点的配体PTCP可以构建1D链状的配位聚合物并通过氢键形成3D超分子结构。(c)当选用延展性很好的多羧酸配体(例如对苯二甲酸)和具有大空间位阻和多氢键位点的单配位点的配体PTCP可以构建2D平面的配位聚合物,并通过芳香作用或者氢键形成3D结构。

【Abstract】 With the rapid development of the organic chemistry and inorganic chemistry, the coordination chemistry become the focus of the synthesis of new solid material. More and more new polymers are synthesized and depositted in CCDC in the form of crystal. At the same time, the supramolecular chemistry has a great progress in the recent years. So metal-containing supramolecular has rapidly emerged as a hot subject and more and more amusing coordination supramolecular polymers have been researched in literature. But there is still a lack of an effective method to control the structures.In this paper we have selected the 2-phenyl-1H-1,3,7,8-tetraazacyclopenta[1]-phenanthrene (PTCP) as the multi-nitrogen ligand which contains five condensation rings and four nitrogen atoms, two at the phenanthroline moiety and two nitrogens from the imidazole portion. The ligand can coordinate with most of the transition metal ions and rare metal ions. The imidazole rings in this ligand is both the H-donor and H-acceptor which are good candidates to cunstruct new coordination supramolecular structures. At the same time, the aromatic acid can coordinate with most of the metal atoms which can be selected as the bridge ligands.Nineteen novel coordination complexes [Eu2(BDC)3(H2O)]n (1); [Pb3(BTC)2(H2O)]n(2); [Pb3(BTC)2 (H2O)2]n·n(H2O)3.5 (3); [Ni2(PTCP)4(SO4)(H2O)3] [(SO4)(H2O)4.5] (4); [Fe(PTCP)3][(SO4)(H2O)7] (5); [Co2(PTCP)2(3,5-NSYS)2(H2O)2] (6); [Zn(PTCP)2(5-SSYS)(H2O)] (7); [Pb2(PTCP)2(BTC)2] (8); [Ln2(PTCP)2(m-BDC)3]n·0.5n(H2O) (Ln=Ce,Pr,Nd,Sm,Eu,Tb,Dy,Tm) (9-16); [Co(PTCP(LBSS)(H2O)2]n·n(H2O) (17); [Pb(PTCP)(PYDC)]n·0.5n(H2O) (18); [Cu(PTCP)(PTA)]n (19) have been hydrothermally synthesized and characterized by IR spectra, Elemental analyses, TGA, X-ray single-crystal diffraction and solid-state photoluminescent spectra. Complex 1-3 represent the new 2D or 3D inorganic-organic polymeric structure constructed by aromatic carboxylic acid and transition metal ions. Complex 4 and 5 are 3D coordination supramolecular polymers formed form OD structure. Both polymers are constructed by PTCP and inorganic metal salt. Complexes 6-19 are constructed by PTCP and aromatic carboxylic acid ligands. These polymers are the 2D or 3D supramolecular structure which are constructed form OD or 1D structure.In this paper, a new method is found to control the dimension by using the PTCP ligand:(1) When the single multi-aromatic acid is used as the organic ligand, the high dimensional (2D or 3D) polymers can be formed;(2) When the PTCP ligand and the analog are used as the single-ligand, low dimensional (OD) polymer can be synthesized, but the OD structure can be grown to high dimensional (2D or 3D) supramolecular structure;(3) When the PTCP and multi-aromatic acid ligands are mixed-used, OD or 1D multi-nuclear polymers can be self-assembled in to the 3D supramolecular structure. In the most case, the multi-aromatic acid ligands used as the bridge ligands and the PTCP ligand is the key point of constructing the hydrogen-bond net. The 1D or OD is rest with the steric effect and the tractility of the carborxylic acid ligands.(a) When single-carborxylic acid ligands (salicylic acid) are selected to mixed-used with ligands (such as PTCP) which have big steric effect and single coordinate site, OD polymers can be constructed and extended to 3D supramolecular structure via H-bonds.(b) When multi-carborxylic acid ligands (such as 1,3-benzenedicarboxylic acid, 1,3,5-benzenetricarboxylic acid, pyridine-2,5-dicarboxylic acid, and so on) with big steric effect are selected to mixed-use with ligands (such as PTCP) which have big steric effect and single coordinate site, 1D chian polymers can be constructed and extended into 3D supramolecular structure via H-bonds and stacking interactions.(c) When multi-carborxylic acid ligands (such as 1,4-benzenedicarboxylic acid) with small steric effect and good tractility are selected to mixed-use with ligands (such as PTCP) which have big steric effect and single coordinate site, 2D polymers can be constructed and extended into 3D supramolecular structure via H-bonds and stacking interactions.

  • 【网络出版投稿人】 江苏大学
  • 【网络出版年期】2011年 06期
节点文献中: 

本文链接的文献网络图示:

本文的引文网络