节点文献

池蝶蚌(Hyriopsis schlegeli)F1代家系选育与生长性状的遗传分析

Families Selection and Genetic Analysis of Growth Traits for Hyriopsis Schlegeli in the First Generation

【作者】 汪勇飞

【导师】 洪一江;

【作者基本信息】 南昌大学 , 水产养殖, 2010, 硕士

【摘要】 本研究对池蝶蚌的壳长、壳高、壳宽和体重的生长规律进行了探讨,并从五个量化描述生物生长过程知名的生长模型:Brody、von Bertalanffy、Gompertz、Logistic和Richards中得出了分别描述四个性状早期生长的最优模型;利用性状良好的亲本建立了池蝶蚌Fl代家系,并分析了各家系的家系间及家系内的生长差异;以所建立的家系为研究对象,对壳长、壳高、壳宽和体重这四个性状进行了相关分析,分析了壳长、壳高和壳宽对体重的影响效果并建立了相关的回归方程;利用动物模型BLUP (Best Linear Unbiased Prediction)法估计了壳长、壳高、壳宽、体重及壳长与壳高比值(SL/SH)和壳长和壳宽比(SL/SW)的遗传力,并预测了上述性状的个体育种值。实验结果表明:1、Brody模型为池蝶蚌2龄前壳长、壳高和壳宽的最优生长模型,而体重的最优生长模型则是von Bertalanffy模型。在池蝶蚌生长的前两年,壳长和壳高表现出“快-慢”的生长特征;而壳宽和体重则表现出“慢-快-慢”的生长特征。2、在所测量的24个池蝶蚌F1代家系中,Fam27(Family 27,27号家系)、Fam31、Fam47、Fam57和Fam93各性状的累积增长量的排名都比较靠前,其中,15月龄前Fam57的壳长、壳高和体重的累积增长量都是最大的,且其在5-15月龄间的绝对增长率也最大,Fam31的壳宽在15月龄前的累积增长量和5-15月龄间的绝对增长率最大。Fam79和Fam90的壳长、壳宽和体重的累积增长量都比较小,其中Fam79的壳高的累积增长量最小。15月龄的池蝶蚌的壳长、壳高、壳宽和体重生长性状都存在极显著差异,且它们的绝对增长率也存在极显著差异。聚类分析结果表明Fam57生长优势最大,单独聚为第一类,而生长优势较明显的Fam47、Fam93、Fam27和Fam31则聚为第二类,而生长优势最小的Fam14、Fam28、Fam07、Fam58、Fam90和Fam79则聚为第四类,其余家系则聚为第三类。3、在所研究的5月龄、7月龄、10月龄和15月龄中,池蝶蚌各形态性状与体重的相关性都很高,且都达到了极显著水平;壳长对体重的直接作用最大,其次是壳宽,而壳高则主要通过壳长来间接影响体重,决定系数分析结果与通径分析的结论一致。4个不同月龄阶段的形态性状对体重的回归方程:5月龄时的回归方程:Y=-11.876+0.255X1+0.102X2+0.504X37月龄时的回归方程:Y=-15.168+0.288X1+0.081X2+0.785X310月龄时的回归方程:Y=-18.820+0.463X1+0.098X2+0.309X315月龄时的回归方程:Y=-48.628+0.724X1+0.286X2+1.021X3式中,Y为活体重(g),X1、X2、X3分别代表壳长(mm)、壳宽(mm)和壳高(mm)。对这些方程的拟合度检验,结果表明这些方程都具有极好的拟合效果。4、池蝶蚌壳长的遗传力0.7645,壳高的遗传力为0.6805,壳宽的遗传力为0.4951,体重的遗传力为0.4992。在个体育种值排名结果中,壳长、壳高和壳宽的前十名个体主要来自Fam57,其所占比例依次为80.00%、90.00%和80.00%;而体重育种值前十名中的个体则主要来自Fam27,其所占比例为50.00%。在家系平均育种值排名结果中,各生长性状育种值排名都靠前的家系有Fam27、Fam45、Fam47、Fam57和Fam93五个家系,其中Fam27和Fam57各性状的家系平均育种值排名中排在前两名。SL/SH值个体育种值的排名结果的前三十位主要来自于家系Fam02、Fam28、Fam40、Fam57、Fam73和Fam79,其中来自Fam40的个体最多,占30%;SL/SW值的个体育种会是排名前三十名主要来自Fam12、Fam73、Fam79和Fam90,其中来自Fam79的个体最多,占36.67%。上述研究结果对池蝶蚌的选育工作提供了一定指导作用。

【Abstract】 The growthlaw of four growthtraits, which were respectively shell length, shell height, shell width and body weight were investigated in the research by taking Hyriopsis schlegeli as the experimental subject, the optimum growthmodel for above quantitative traits in Hyriopsis schlegeli was chosen from the five candidational growthmodels, Brody, von Bertalanffy, Gompertz, Logistic and Richards; The families was built with the healthy parents, growthperformances among 24 F1 families were compared by variance analysis, cluster analysis and residual analysis. The effects of morphometric on body weight for Hyriopsis schlegeli at four months (5 month, 7 month, 10 month and 15 month) were analyzed by correlation analysis and path analysis; Utilizing Derivative-Free Restricted Maximum Likelihood (DFREML) and animal model Best Linear Unbiased Prediction (BLUP), the animal additive effects were calculated, and the breeding value were predicted.The results showed that:1). In the first two years on the growthof Hyriopsis schlegeli, based upon Mallows’ criterion of model selection, Brody model was most suitable to depicting the growthof shell length, shell height and shell width; von Bertalanffy model was the best in fitting and predicting the growthbody weight.2). There were significant differences in growthtraits between and within groups (P<0.01). The Fam57 (Family 57) had significant growthadvantage in the first 15 months at the shell length, shell height and body weight, and the family had the maximum absolute growthrate among 5 to 15 months; The Fam31 had significant growthadvantage in the first 15 months at the shell width, and the family had the maximum absolute growthrate among 5 to 15 months. The results of the cluster analysis indicated that Fam57 had best growthsuperiority, and Fam14、Fam28、Fam07、Fam58、Fam90, Fam79 had the lowest growthadvantage.3). Three correlation coefficients between each morphological characters and the weight achieved very significant difference levels (P<0.01). The shell length was most related with body weight, the shell width was secondly. The multiple regression analysis built the regression equations for each month. The equations were showed as following:The regression equation for 5 month:Y=-11.876+0.255X1+0.102X2+0.504X3The regression equation for 7 month:Y=-15.168+0.288X1+0.081X2+0.785X3The regression equation for 10 month:Y=-18.820+0.463X1+0.098X2+0.309X3The regression equation for 15 month:Y=-48.628+0.724X1+0.286X2+1.021X3The Y was body weight, X1 was shell length, X2 was shell height, X3 was shell width.4). The heritabilities for shell length was 0.7645, the heritabilities for shell height was 0.6805, the heritabilities for shell width was 0.4951, the heritabilities for body weight was 0.4992. Animals were ranked according to the estimate breeding value (EBV) to provide information for selection. The percent of the shellfishes from Fam57 among the top ten EBVs for each growthtraits was 80.00%,90.00%,80.00% and 30.00% respectively. Families were ranked according to their mean EBVs, the growthtraits of Fam27 and Fam57 were the top two families among the families. Fam02、Fam28、Fam40、Fam57、Fam73, Fam79; and the top thirty animals on the rank for the mean EBVs of the SL/SW main from Fam2、Fam73、Fam79, Fam90.

  • 【网络出版投稿人】 南昌大学
  • 【网络出版年期】2011年 04期
节点文献中: 

本文链接的文献网络图示:

本文的引文网络