节点文献

基于流—固耦合的轴流泵叶轮性能预测

Based on Fluid-solid Coupling Axial Flow Pump Impeller Performance Prediction

【作者】 齐学军

【导师】 宋文武;

【作者基本信息】 西华大学 , 动力机械及工程, 2010, 硕士

【摘要】 轴流泵在现代工业中发挥着非常重要的作用,叶轮作为轴流泵的工作部件,其性能优劣直接决定着轴流泵的效率。本文采用流-固耦合的方法对轴流泵的叶轮进行计算分析。根据流体力学和弹性力学建立了轴流泵的流-固耦合有限元方程。计算过程中采用k ?ε方程模型,并对流固耦合的求解问题进行了深入分析。本文采用UG建模软件,建立轴流泵的叶轮实体模型和流体域模型,通过ADINA软件接口将模型数据导入ADINA软件。在ADINA-structure模块中对叶轮的结构进行求解设置,生成固体部分求解文件;在ADINA-fluid模块对流体域部分进行求解设置,生成流体部分求解文件,最后在ADINA-FSI模块中对以上两个文件进行双向耦合计算。对叶轮的三个运行工况进行计算,得到不同工况下叶轮内部应力和应变,流体速度和压力分布情况。通过对计算结果的分析得到以下结论:1.叶轮最大应力、应变均发生在叶轮和轮毂连接的部位,越靠近叶片外缘应力值越小;并且随着流速的增大根部的应力和应变也不断增大;在设计时应注意叶轮根部区域。流场最大的压力梯度发生在叶轮根部区域,随着流速的增大,压力值也不断增大;叶片的前端变形也增大,造成轴流泵叶片的振动。长时间的运行之后容易在叶轮根部造成疲劳破坏,从而影响轴流泵的正常工作;因此应该注意叶轮根部的强度。2.在叶片附近区域有小漩涡出现,以及由此形成的回流,破坏了内部正常流动状况,使轴流泵效率降低;因此在轴流泵设计时应该注意选取的翼型,尽量减少回流现象的发生,提高轴流泵的效率。通过对轴流泵叶轮流固耦合的数值模拟,得到了叶轮内部真实流动情况和叶内部应力分布情况。同时,详细分析了不同工况下的流固耦合情况,为以后轴流泵叶轮设计提供一定的帮助和参考。

【Abstract】 The axial flow pump plays an important role in the modern industry; the impeller is the key parts of axial flow pump, its performance deciding the axial flow pump’s efficiency. This paper uses the fluid-solid coupling method compute the axial flow pump’s impeller. According to the hydromechanics and the elasticity theory established axial flow pump’s fluid - solid coupling finite element equation. In the computational process uses the k ?εequation model, and analysis the solution question in the process of fluid-solid coupling.This paper uses the UG software, establishes axial flow pump’s impeller model and fluid model, transfer the model data into the ADINA software. Carries on the solution establishment to impeller’s structure in the ADINA-structure module and produce the solid solution document; Carries on the solution establishment to the fluid part in the ADINA-fluid module and produce fluid solution document, finally put the coupling computation in the ADINA-FSI module.Compute the impeller’s three working conditions, obtains the impeller internal stress and the strain on the different operating conditions, the fluid velocity and the pressure distribution situation. We can draw the important conclusion from the results of computation and analysis:1. the impeller’s biggest stress and strain occurs in root; which connects the blade and the wheel hub, the stress becomes more smaller approaches the head of blade; the stress and strain increasing with the velocity increasing; so, when we design the impeller should pay attention to root areas. The most tremendous pressure gradient of fluid occurs in the impeller root areas, along with flow speed increased, the value of pressure and the front of blade’s distortion also increased; cased the axial flow pump blade’s vibration. Working for a long time, it can easily produce the fatigue failure in the impeller root, and destroy the axial flow pump’s normal work; therefore, we should pay more attention to the impeller’s intensity.2. There have small eddy and backflow appears nearby the blade, destroy the internal normal flowing condition, which cases the axial flow pump’s efficiency become low; so we should pay attention to the selection the wing section in the process of design the axial flow pump, reduces the backflow phenomenon occurrence, raises the axial flow pump’s efficiency.We can obtain the impeller’s interior actual flow situation and the impeller internal stress distribution due to axial flow fluid-solid coupling numerical simulation. At the same time, analysis the fluid-solid coupling under different working conditions, it has provided certain help and the reference for the later axial flow pump impeller’s design.

  • 【网络出版投稿人】 西华大学
  • 【网络出版年期】2011年 04期
节点文献中: 

本文链接的文献网络图示:

本文的引文网络