节点文献

深圳地区建筑外遮阳系数的理论与实验研究

Theoretical and Experimental Study on Building External Shading Coefficient in Shenzhen

【作者】 刘晓杰

【导师】 郑洁;

【作者基本信息】 重庆大学 , 供热、供燃气、通风与空调工程, 2010, 硕士

【摘要】 我国夏热冬暖地区夏季漫长,外窗太阳辐射得热产生的空调能耗占建筑空调总能耗的30%~40%,建筑外遮阳是深圳地区一种有效的节能措施,但我国目前对遮阳的研究还处于初始阶段,尤其对近年出现的一些复杂的遮阳构件的节能效果缺乏深入的研究,对遮阳装置的实际效果缺乏深入的了解。对建筑遮阳的节能特性及评价标准进行研究,将为完善现有的节能设计标准和外遮阳性能检测评价提供有效参考,为建筑节能设计提供科学的方法和基础数据。遮阳系数是评价外遮阳效果的重要参数。本文从建筑节能的角度出发,以传热学理论为基础,采用遮阳系数作为主要评价指标,对建筑外窗遮阳的构造特点、节能效果计算及外遮阳评价方法进行研究,主要研究工作有:针对水平、垂直遮阳板及固定、活动百叶遮阳,提出了基于直射、散射辐射透光计算的辐射得热计算模型,分析了水平、垂直遮阳的全年节能特性,探讨了百叶遮阳的角度优化设置及角度调节策略;对遮阳百叶的效果进行实测,并与理论计算结果进行对比分析,主要研究结论如下:(1)推导出深圳地区水平、垂直遮阳板及固定、活动百叶外遮阳的遮阳系数计算公式;通过分析得出,遮阳系数的全年变化特性与直射辐射遮挡效果有较大的差异,遮阳系数更能反映遮阳构件的节能效果。(2)遮阳构件设计应在降低负荷与自然采光和降低眩光方面达到合理的平衡点,对于常用的宽度间距比接近1的固定百叶遮阳,水平式遮阳东、西、南、北各朝向的板片倾角宜设置为60°、60°、90°、120°;垂直式遮阳的各朝向的板片倾角宜设置为45°、135°、45°、90°。(3)针对深圳地区宽度间距比接近1的活动百叶遮阳,提出了冬、夏季的遮阳板片的角度调节方案,水平遮阳的东西向板片角度调节范围宜设置在45°~120°范围内,南向宜设置在60°~120°范围内,北向可不采用活动百叶遮阳。(4)现场测试表明,百叶遮阳可以降低外窗负荷40%~70%,模拟与实测辐射得热存在一定的相关性,模拟与实测的单日遮阳系数值存在一定偏差。其中,风机盘管的供冷量测量的误差最大。降低风机盘管的水流量并提高室内温度控制精度可以大大提高该装置的精度。

【Abstract】 Hot summer and warm winter region in China has a long summer, the air-conditioning energy consumption because of the solar heat gain in summer accounts for 30% to 40% of the total air conditioning energy consumption. The building external sunshade is an efficiency measure for Shenzhen and the whole south of China. But our current shade research is still in the initial stages, particularly there is not in-depth study on the energy-saving effect of the complex shading component emerged in recent years, and there is not understanding for the real effect of shading devices. The research on building energy-saving feature of sunshade devices and evaluation criteria will supply effective reference for improving existing design standards and external shading performance testing evaluation, and provide scientific methods and basic dada for building energy efficiency design.Shading coefficient is an important parameter for shading performance evaluation. The research which is from the perspective of energy efficient, based on heat transfer theory, with shading coefficient as the main evaluation parameter, studies the structure characteristic of the building external shading facilities, energy saving effect calculation and the shading evaluation method. Main research work are: proposed the heat gain calculation model based on direct and diffused radiation transmittance calculation for horizontal, vertical visor and fixed, activities louver shading devices, analyzed the annual energy saving features of the horizontal and vertical shading visor, investigated the slat angle optimization setting and angle adjustment strategy; measured the louver shading energy saving performance and compared with theoretical calculated results. The main conclusions are as follows:(1) Deprives the shading coefficient calculation formulas for horizontal, vertical visor and fixed, activities louver shading in Shenzhen, Analyses indicates that the annual change properties of SC and the direct radiation shielding effect are quiet different, SC can better reflect the energy saving effect of shading structures.(2) Shading facilities should be designed to achieve a reasonable balance among reducing the load, natural light and reduce glare. For the louver shade whose slat width and spacing ratio is nearly equal to 1, the slat angle of the horizontal louver shade should set to 60°, 60°, 90°, 120°for east, west, south and north orientations; the slat angle of the vertical louver shade should set to 45°, 135°, 45°, 90°. (3) Proposes the slat angle adjustment strategy in Shenzhen in summer and winter for the louver shade whose width spacing ratio is nearly equal to 1, the slat angle adjustment range of the louver shade in east and west should set in the range of 45°and 120°, and should set in the range of 60°and 120°. In north orientation activities louver shade don’t need to be used.(4) Field tests shows that the external louver shade can reduce the solar heat gain of 40%~70%. The solar heat gain by simulation and testing is relevant, the single day shading coefficients by simulation and testing have some deviation. The error causes by the cooling fan coil unit is the maximum. Reducing the flow rate of fan coil cooling water and raising the indoor temperature control accuracy can great improving the accuracy of the device.

  • 【网络出版投稿人】 重庆大学
  • 【网络出版年期】2011年 03期
  • 【分类号】TU226;TU111
  • 【被引频次】5
  • 【下载频次】280
  • 攻读期成果
节点文献中: 

本文链接的文献网络图示:

本文的引文网络