节点文献

磷钠锶钡石中Sm2+的还原和发光结构研究

Reduction, Luminescence and Microstructure of Sm2+ Doped NaSr1-xBaxPO4

【作者】 开卫芳

【导师】 黄彦林;

【作者基本信息】 苏州大学 , 材料学, 2010, 硕士

【摘要】 稀土离子掺杂的发光材料在发光器件、激光和探测等多种领域得到广泛应用。Sm2+掺杂的发光材料可以实现永久光谱烧孔,对高密度光存储具有潜在的的应用。在照明和显示领域Eu3+是应用最多的红发光激活离子。Sm2+和Eu3+还是很好的结构探针离子,在晶格之中的周围环境对于其发光光谱和衰减影响很大。利用这个特点,可以研究Sm2+和Eu3+离子所处的周围结晶学环境,提供了基质中不同发光中心格位的对称性,进而给出物质结构的详细信息。本论文选择了正磷酸盐作为基质材料,以Sm3+和Eu3+作为激活离子,用高温固相反应法分别制备了Sm3+和Eu3+离子掺杂的磷锶钡钠石(NaSr1-xBaxPO4)、并用X射线辐照法实现了Sm2+离子在磷锶钡钠石和KSrPO4中的还原,研究了Sm2+和Eu3+离子的发光性能,讨论了缺陷和发光性能的内在关联。第三章探讨了不同的锶、钡比对NaSr1-xBaxPO4晶体结构、Sm2+还原效率及其发光性能的影响;通过对荧光光谱的分析,研究了NaSr1-xBaxPO4样品中稀土离子的晶体学环境。结果表明:随着Ba含量的增加,NaSr1-xBaxPO4的晶胞参数和单胞体积逐渐增大,并且伴随着XRD衍射峰向低角度的迁移;随着Ba含量的增加,NaSr1-xBaxPO4中Sm2+离子的还原效率增强,而相应的5D0→7F0发光跃迁的衰减时间减小;Sm2+在NaSr1-xBaxPO4中的结构具有一个强烈扰动的晶体场环境,主要是由Sr(Ba)在晶格中的占位混乱和晶格中由X射线辐照产生的复杂缺陷造成的。第四章探讨了Sm2+离子掺杂KSrPO4的发光光谱、Sm2+离子的晶体学位置和温度对荧光特性的影响。研究表明:Sm2+在KSrPO4的晶格中占据三种不同晶体学结构的阳离子位置。Sm2+离子的发光光谱有一组线状的发光谱线(688-715 nm)与位于650–800 nm处的宽带发射组成,线状光谱来自Sm2+离子的5D0→7FJ (J=0, 1, 2)跃迁,宽带发射则归因于Sm2+离子的5d→4f辐射跃迁。Sm2+离子5D0→7F0的宽带发射跃迁同时也表明Sm2+掺杂的KSrPO4结构具有一个强烈扰动的晶体场环境,主要是由Sr/?K位置占位混乱和基质中Sm2+离子在Sr/?K位置上的复杂取代作用造成的。该结论对于其他稀土离子在KSrPO4中的发光和应用研究具有参考意义。例如,Sm2+和Eu2+离子半径和化学性质近似,可以由此推测出KSrPO4中Eu2+的结晶学位置和发光光谱特点。第五章,用X射线衍射(XRD)、傅里叶变换红外光谱(FT-IR)、傅里叶变换拉曼光谱(FT-Raman)和扫描电镜(SEM)等技术对Eu3+掺杂的NaSr1-xBaxPO4物相组成、结构和晶体形貌进行了表征。探讨了不同晶体结构中Sr/Ba比对晶体结构,发光性能和发光寿命的影响。实验通过对Eu3+的发光特点的表征和研究,分别测试了Eu3+离子的室温激发光谱和发射光谱。研究表明:NaSr1-xBaxPO4属简单六方晶系,所有的振动均来自PO43?阴离子基团;Eu3+占据非反演中心的格位,该材料中阳离子位置具有高度扰动性的特点;Eu3+离子的发光衰减是单指数衰减曲线。随着晶体结构之中钡含量的增加,Eu3+离子5D0→7F2与5D0→7F1的发光强度之比明显增大,说明Eu3+离子在晶格中的对称性明显降低。该高比值,对掺杂材料的发光强度和发光的色度都是有益的。本论文创新点是在NaSr1-xBaxPO4中成功实现了Sm2+在X射线辐照下的还原,并首次报道了稀土掺杂的NaSr1-xBaxPO4的微结构、X射线辐照时间和钡含量对Sm2+还原效率的影响;Sm2+离子掺杂的KSrPO4结构特点,Sm2+离子的晶体学位置和温度对样品荧光性的影响。这些对于NaSr1-xBaxPO4和KSrPO4的进一步应用、稀土离子的还原方法的发展都具有参考借鉴和实际应用价值。

【Abstract】 Rare-earth doped light-emitting material has been paid intense attention because it has been widely used in various fields, such as in display devices, laser and display. Sm2+ ion has potential application in high-density optical storage because of its property of persistent spectral hole burning. Eu3+ as activating ions has been the most widely used in the field of luminescence and display. Sm2+ and Eu3+ ions are also two good kinds of probe material. It highly affected on the spectra and decay. Take advantage of this feature, we can study the surrounding environment of Sm2+ and Eu3+ ions which provides the symmetry of different luminescence centers in the matrix and then gives details of physical structures.This paper chose the orthophosphate as a substrate material, Sm3+ and Eu3+ as activating ions, Sm3+ and Eu3+ ions doped strontium barium phosphate sodalite (NaSr1-xBaxPO4). Sm2+ ion was reduced by X-ray irradiation in strontium barium phosphate sodalite and KSrPO4. We studied the luminescence of Sm2+ and Eu3+ ions and discussed the relationgship between defect and luminescence.In the chapter three, the effect of different mole ratios of Sr/Ba on the crystal structure, the reduction of Sm2+ and the luminescence of Sm2+ in NaSr1-xBaxPO4 were also discussed; we studied the crystal field environment of RE ions in NaSr1-xBaxPO4 through the analysis of the fluorescence spectra. The results show that with increasing of Ba atoms the crystallography parameters and the volume of cell in NaSr1-xBaxPO4 is increased and the main XRD peaks shift to low degree, the reductive efficiencies of Sm2+ ions in NaSr1-xBaxPO4 are enhanced, while the corresponding decay time of 5D0→7F0 transition decreases rapidly. The structure of Sm2+ in NaSr1-xBaxPO4 is a heavily disturbed crystalline environment due to the Sr(Ba) disorder and the complicated defects in the lattice created by the X-ray irradiation.In the chapter four, we discussed the fluorescence spectra of Sm2+-doped KSrPO4, crystallographic position of Sm2+ ions and the temperature effects on the fluorescence. It was found that there were three crystallographic cationic sites available for Sm2+. Fluorescence spectra of Sm2+ ions is made up of the emission lines (688-715 nm) and the broad emission bands of 650–800 nm. The emission lines came from the 5D0→7FJ (J=0,1,2) transitions of Sm2+ ions. The broad emission bands are referred to the 5d→4f transition of Sm2+ ions. The 5D0→7F0 transitions of Sm2+ ions are broad which proves the structure of Sm2+ doped KSrPO4 is a heavily disturbed crystalline environment due to the Sr/K disorder and the complicated substitutions among K, Sr and Sm2+ ions. These results can be helpful for the luminescence and application of the other RE ions in KSrPO4. Since the ionic radii and the chemical properties for Sm2+ and Eu2+ are nearly identical, one may expect the crystallographic position and luminescence of Eu2+ in KSrPO4.In the chapter five, characteristics of Eu3+-doped NaSr1-xBaxPO4 were investigated by the use of XRD, SEM, FTIR and FT-IRaman spectra. The effect of different mole ratios of Sr/Ba on the crystal structure was also discussed. The excitation and emission spectra of Eu3+-doped NaSr1-xBaxPO4 were discussed. The results show that NaSr1-xBaxPO4 belongs to hexagon system, all the vibrations were from PO43? anion unit, the Eu3+ ion in crystal was located in non-reversion center in the lattice, the crystallographic site of cation in the crystal is highly disturbed and disordered. The decay exhibit a single exponential curve indecated that there is only one Eu3+ luminescence center. With the barium content increasing, luminous intensity ratio of 5D0→7F2 and 5D0→7F1 of Eu3+ ion increased significantly which indicated that Eu3+ ions in the crystal lattice symmetry decresed significantly. The high ratio is useful to the luminous intensity and color of the doped material.The novelties of this desertation are the following: we successfully achieved the reduction of Sm2+ in the NaSr1-xBaxPO4 by X-ray irradiation. The microstructure of the RE ions doped NaSr1-xBaxPO4, X-ray irradiation time and the content of Ba effect on the reduction efficiency of Sm2+ were first reported. Besides this, we also discussed the structural features of Sm2+-doped KSrPO4, crystallographic position of Sm2+ ions in KSrPO4 and the temperature effects on the fluorescence. These results are helpful in further research of NaSr1-xBaxPO4 and KSrPO4. And this also are good references for the reduction of rare-earth ions.

【关键词】 稀土离子射线辐照还原微结构发光
【Key words】 Rare-earth ionsReductionMicrostructureLuminescence
  • 【网络出版投稿人】 苏州大学
  • 【网络出版年期】2011年 01期
节点文献中: 

本文链接的文献网络图示:

本文的引文网络