节点文献

SiO2-Na2O-AlO功能玻璃与金属的共阳极键合试验研究

The Study of the Anodic Bonding between SiO2-Na2O-AlO Function Glasses and Metals

【作者】 郭劲言

【导师】 孟庆森;

【作者基本信息】 太原理工大学 , 材料学, 2010, 硕士

【摘要】 阳极键合(anodic bonding)技术是常用在微电子封装中的一种利用电和热相互作用连接金属、半导体与陶瓷材料的手段。它在微电子制造领域的中有着重要地位。共阳极法等效视作是两个或者多个单层阳极键合过程的并联键合法,键合过程是在外加电场的作用下,两侧的阴极材料同时发生向阳极的离子迁移,并在界面处形成耗尽层,进而和阳极材料反应并有效结合在一起。可以用于多层微电子机械系统的制备。本文对阳极键合技术所需要的工艺条件设计了可以满足试验工艺参数的AB-1000型阳极键合反应炉。采用脉动发生器调制电路,其优点是可以持续高效地为键合试样提供稳定的高压直流电压。本文采用正交试验对玻璃-铝多层晶片进行共阳极键合工艺性试验,重点分析键合过程的键合机理及其工艺参数影响;采用光学显微镜、SEM、XRD、万能材料拉伸试验机等仪器分别对键合材料分析了键合后界面结合区的微观组织结构以及键合试样的力学性能,并探讨了过渡区形成的机理。界面的微观组织分析表明界面本质是离子的迁移和扩散,结合区由玻璃(陶瓷)-扩散过渡层-金属的结构形成,扩散过渡层在界面两侧的化学元素呈梯度分布。研究认为:金属与玻璃的阳极键合的根本是在键合过程中离子扩散和界面处的氧化。键合过程中电压、温度是影响键合反应的主要因素。界面形貌和EDS分析显示在金属与玻璃的键合界面处有明显的过渡层产生,界面两侧元素处呈梯度分布,元素扩散迹象明显。玻璃-铝-玻璃阳极键合试件结合强度随温度和电压的增加而增加,断裂发生在靠近铝界面的玻璃基体中,表明界面的结合强度高于基体材料。因此本文认为共阳极法是一种可靠的键合多层晶片的技术。溶胶-凝胶技术应用在阳极键合试样中形成了均匀的涂层而且在界面处有过渡区。可以通过该技术对形状复杂的微电子元器件进行阳极键合。

【Abstract】 Anodic bonding technology is commonly used in microelectronics packaging. It used electricity and heat interactions to connect metal, semiconductor and ceramic materials. It plays an important role in the field of microelectronics manufacturing. The common anode method is equivalence to the two single-layer anodic bonding paralleled process; bonding process was under the influence of external electric field. The ions come from cathode simultaneously mobilized to the anode and formatted depletion layer at the interface, in turn, and response with anode materials connected effectively. Interface microstructure analysis showed that the interface is the essence of ion migration and proliferation, binding area was formatted by the glass (ceramic)-the transition layer-metal structure, spread on both sides of the interface transition layer gradient distribution of chemical elements.In this paper, the AB-1000 anodic bonding reactor was designed to meet the test parameters of anodic bonding technology required reaction conditions. Form the modulation pulse generator circuit, the circuit advantage is sustainable and efficiently for the sample to provide a stable bonding pressure DC voltage.In this paper, we used orthogonal method analysis the glass - aluminum multi-chip anode bonding process. We analysis the anodic bonding process, using optical microscope, SEM, universal tensile testing machine and other equipment analyzed the structure and bonding microstructure the mechanical properties of the bonding sample. And we discussed how to format the transition zone.Interface microstructure analysis showed that the interface is the essence of ion migration and proliferation, binding area was formatted by the glass (ceramic)-the transition layer-metal structure, spread on both sides of the interface transition layer gradient distribution of chemical elements. Experiments found that oxygen element, aluminum elements in glass and aluminum bonding process simultaneously to the glass-aluminum interface, the proliferation of alkali metal ions in the depletion layer. In final, aluminum ion and the non-bridge-bond oxygen atoms in the depletion layer of glass occurred oxidation reaction in the interface to form a permanent bond. Strength of glass-aluminum-glass anodic bonding increases with temperature and voltage, fracture occurred in the glass matrix near the Al interface. The conclusion indicated that the interface bond strength is higher than the matrix material. Therefore, this article maintained that the anode method is a reliable multi-chip bonding technology.The sol-gel technology formed a uniform sample coating used in anodic bonding. And a transition zone was formed at the sample interface. The technology can be used at complex microelectronic components on the shape of anodic bonding.

【关键词】 阳极键合玻璃脉动电源溶胶-凝胶
【Key words】 Anodic bondingGlassAluminumPulse powerSol-gel
节点文献中: 

本文链接的文献网络图示:

本文的引文网络