节点文献

以多羧基阴离子表面活性剂为模板剂合成非层状相介孔四氧化三钴、在温和的条件下合成介孔四氧化三钴纳米晶和以脲醛树脂为前驱体合成介孔碳

【作者】 王天生

【导师】 陈保华;

【作者基本信息】 兰州大学 , 有机化学, 2010, 硕士

【摘要】 近年来,由于非硅基介孔材料在某些领域具有巨大的应用前景,受到了人们的特别关注。例如,介孔Co3O4和介孔碳材料。四氧化三钴材料是一种重要的磁性P型半导体材料,被发现在气体传感,太阳能工程,可充电锂电池等方面具有很大的应用前景。特别是2000年,Tarascon和他的同伴首次将纳米级氧化钴作为负极材料应用于锂离子电池以来,人们对四氧化三钻进行了广泛的研究,各种结构的纳米四氧化三钴被成功的制备。纳米多孔碳材料具有优良的化学,物理和热稳定性,是非常好的能源转换和存储材料。其中,介孔碳作为电极材料引起了人们的广泛关注,由于它具有很高的比表面积,和非常丰富的、用于进行快速传质和离子扩散的孔结构。本文我们主要进行了非层状介孔Co3O4和介孔碳的合成研究,具体内容如下:1.我们合成了正十八烷基-N-亚氨基二乙酸(SHIDA)、正十二酰基-N-(二羧甲基氨基乙基)-N-(羧基甲基氨基乙基)胺(TCA)和正十二酰基-N,N-二-(二羧甲基氨基乙基)胺(FCA)三种表面活性剂。分别以月桂酸、SHIDA和TCA为模板剂合成了介孔氧化钴,研究了表面活性剂所含羧基数目对其结构的影响。结果显示以TCA为模板剂合成的介孔氧化钴为非层状相,这与Israelachvili提出的分子堆积参数决定介观结构的理论相一致。另外,考察了烧结条件对样品结构的影响,并对控制烧结的样品进行了电化学性能的测试,结果显示其在锂离子电池方面具有很大的应用潜力。2.在此,我们介绍了一种经济、温和条件下合成介孔四氧化三钴纳米晶的方法。并且研究了溶液pH值对材料结构的影响。3.我们以脲醛树脂为前驱体、三嵌段共聚物F127为结构导向剂,通过溶剂挥发诱导自组装战略成功的合成了介孔碳。同时,考察了烧结温度对样品结构的影响。

【Abstract】 Recently, non-siliceous mesoporous materials have been receiving extensive attention duo to great prospects in some areas. For example, mesoporous Co3O4 and mesoporous carbon materials.Cobalt oxide, as a p-type semiconductor with spinel structure, has been found to be a promising material in gas-sensing, solar engineering, and rechargeable lithium batteries. Particularly, since nano-sized cobalt oxide was firstly used as negative-electrode material for lithium-ion battery by Tarascon and coworker in 2000, a variety of tricobalt tetraoxide nanostructures have been synthesized.Nanoporous carbon materials possess excellent chemical, physical and thermal stability, and are very interesting materials for energy conversion and storage. Especially, mesoporous carbon (MC) attracts broad attention as electrode material due to high specific surface area, abundant mesoporous structure and appropriately porous size for quick mass transfer and ion diffusion.This paper focuses on the method of the synthesis of non-layered mesoporous Co3O4 mesoporous carbon. The main content and results are presented below.1. We successfully synthesized n-octadecyl-N-iminodiacetic acid (SHIDA) and n-lauroyl-N-(dicarboxymethyl amino ethyl)-N-(carboxymethyl amino ethyl) amine (TCA) and n-lauroyl-N,N-di-(dicarboxymethyl amino ethyl) amine (FCA). We successfully synthesized the mesoporous Co3O4 via specially designed surfactant and also studied the effect of surfactant carboxyl on the synthesis of mesoporous Co3O4 by using lauric acid, SHIDA and TCA as template, separately; and found that mesoporous Co3O4 with non-layered structure prepared by using TCA as template, which was dramatically different from that synthesized by the other two surfactants. This is agreed with the theory raised by Israelachvili. Besides, we preliminarily studied the electrochemical performance of the mesoporous Co3O4, which displayed the material has potential application as anode material for Li ion secondary battery.2. In this study, we developed an economically reasonable method, via which mesoporous nanocrystalline Co3O4 can be synthesized conveniently under moderate conditions. In addition, we studied the effect of the pH value of solution on the material structure.3. We report a kind of simple and efficient approach to synthesize mesoporous carbon by using urea-formaldehyde resin as a polymer precursor, and amphiphilic block copolymers of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) is used as structure-directing agent. Then, using evaporation-induced self-assembly (EISA) strategy, the mesoporous carbon can be introduced through one-step process. Besides, we study the effect of the calcination temperature on the structure of the product.

  • 【网络出版投稿人】 兰州大学
  • 【网络出版年期】2010年 11期
节点文献中: 

本文链接的文献网络图示:

本文的引文网络