节点文献

金属橡胶磁悬浮轴承组合支承转子系统动力学特性研究

Dynamic Characteristics of Magnetic Bearing System with Metal Rubber Annuluses

【作者】 高华

【导师】 谢振宇;

【作者基本信息】 南京航空航天大学 , 机械设计及理论, 2009, 硕士

【摘要】 本文将磁悬浮轴承支承在金属橡胶环上,构成金属橡胶磁悬浮轴承组合支承转子系统。研究转子-磁轴承-弹性基座复杂系统的结构设计及动态特性。在一般磁悬浮轴承控制策略的基础上,利用金属橡胶环产生的附加阻尼,降低转子的振幅,提高系统的稳定性,使转子能够安全稳定地越过系统的弯曲临界转速。主要内容如下:首先,分析了金属橡胶阻尼工作原理,在原有磁悬浮轴承实验台基础上,根据金属橡胶的力学特性和原有实验台机械结构参数设计并加工了金属橡胶环、磁悬浮轴承座、金属橡胶环座、实验台基座等相关零部件,建立了金属橡胶磁悬浮轴承组合支承转子系统实验台。其次,论述了组合支承系统各环节的设计方法,建立了金属橡胶磁悬浮轴承组合支承转子系统的数学模型。采用Matlab软件编写了相关程序,分析了金属橡胶磁悬浮轴承组合支承转子系统的固有频率、阻尼、振型、不平衡响应等性能参数,并与原有的一般磁悬浮轴承转子系统进行了比较。最后,通过试验模态分析和系统高速旋转实验对比分析了金属橡胶环对磁悬浮轴承转子系统动态性能的影响。研究结果表明,增加合适支承刚度及支承阻尼的金属橡胶环可以明显降低转子在弯曲模态频率处的振动,减轻磁悬浮轴承为抑制转子弯曲振动所付出的代价,有利于系统平稳越过弯曲临界转速。

【Abstract】 To reduce the vibration of the flexible rotor supported by active magnetic bearings, metal rubber annuluses are introduced and set around the active magnetic bearings, which is called complex bearing system. Structure design and dynamic characteristics of the system supported by the complex bearings are studied in this paper. The main contents and conclusions are summarized as follows: First, based on the original experimental setup with active magnetic bearings, metal rubber annuluses, seats, and some other parts are designed and machined, and the experimental setup with active magnetic bearings and metal rubber annuluses is built.Secondly, each part of the system is presented. Mathematic model of the system supported by the complex bearings is set up. The analysis program is developed by Matlab, and the dynamic characteristics of the system are analyzed, such as natural frequencies, modal damping, mode shape, unbalance response and so on, and compared with the original experimental setup with only active magnetic bearings.Finally, the dynamic characteristics of the system supported by the complex bearings or by only active magnetic bearings are studied by the Experimental Modal Analysis and actual operation of the two experimental setups. The results show that the metal rubber annuluses with appropriate stiffness and damping can increase the first bending modal damping of the system obviously, and help the system to get across the first bending critical speed safely.

节点文献中: 

本文链接的文献网络图示:

本文的引文网络