节点文献

谐振式微小型机器人动力学模型及参数研究

Research on the Dynamic Model and the Parameters of the Micro Resonant Robot

【作者】 蒋振宇

【导师】 祝宇虹;

【作者基本信息】 哈尔滨工业大学 , 机械电子工程, 2009, 硕士

【摘要】 微小型机器人具有小体积、高柔性、低成本等优点,在表面检测、微机电系统组装、微外科手术、生物工程、光学工程等领域有着广阔的应用前景。微小型机器人的特点及精密作业任务的需求通常要求其移动机构必须具备结构简单、运动分辨力高、运动速度快等特点,而现有的微小型机器人移动机构大都难以同时兼顾以上三个方面的要求。针对微小型机器人移动机构存在的以上问题,哈尔滨工业大学提出一种由双压电膜驱动的移动机构。该机构可以采用粘滑驱动原理较高的运动分辨力;也可以采用谐振驱动原理实现较高运动速度。但由于谐振足配置方式不当导致机构尺寸过大,难以实现小型化。本文提出的机器人采用新的谐振足配置方式可以有效地减小机构尺寸。本文的移动机构利用谐振足的弹性振动和与行走表面的碰撞实现运动。首先,本文基于模态分析结果,对高阶振动模态进行截断,针对低阶模态的振型与频率构造了谐振足的多刚体有限自由度简化动力学模型,基于Hertz接触理论与Coulomb摩擦理论建立了谐振足与行走表面的接触模型,由此建立了谐振足系统的完整模型。搭建实验系统测量谐振足的振动和机器人的速度曲线,验证建模方法和模型的正确性。研究谐振足在正弦信号激励和地面非线性约束下的运动状态,建立系统的庞加莱映射,发现系统随频率变化由周期运动过渡到混沌的过程。通过系统的能量分布分析了解影响系统运动的主导因素。其次依据能量分析的结果,设计了几种不同结构的机器人样机,仿真研究了模态、刚度以及耦合角对机器人运动的影响,发现机器人在两种模态下的不同运动情况。仿真研究了系统在不同幅值的外界输入下的速度曲线,并细致研究了谐振足在高频信号激励下随着输入增大而发生的分岔和混沌现象,探讨了系统混沌运动的深层机理。面向应用场合的要求和能量分析的结果,仿真研究了系统的在不同负载下的运动情况。最后研制几种不同刚度和耦合角的机器人样机,测量了空载下的速度曲线,并与仿真结果对照。测试了其中两种机器人在不同幅值的外界激励下的运动速度曲线。测试机器人在负载下的运动速度曲线。

【Abstract】 Miniature mobile robot which is the typical micro electrical mechanical Systems have potential applications in many domains, such as, surface inspection, handling and assembly of MEMS (Micro-electro-mechanical systems), minimally invasive surgery, bio-engineering, and optical engineering, et al. The locomotion mechanisms in simple structures with high moving resolutions and high driving velocity are required by the micro and miniature robots as they will handle with the sophisticated tasks. Unfortunately, the existing locomotion mechanisms cannot satisfy these requirements at the same time.To solve the problem mentioned above, a novel micro and miniature robot locomotion mechanism driven by bimorphs is proposed. The new locomotion mechanism can get high driving velocity with resonance principle and high moving resolutions with stick-slip principle. However the mechanism is still too large because of the configuration of the legs. New locomotion mechanism is proposed to solve these problems.Mechanism is driven by the vibration of the flexible legs and the impacts between legs and the walking surface. To simple the analysis, a multi-rigid-body model with finite degrees of freedom of the flexible leg is constructed based on the results of modal analysis to reduce the dimensions of system. Then, the impact model between the flexible leg and the walking surface is constructed based on Hertz contact theory and Coulomb friction theory. A experiment system is establish to measure the vibration of the legs and the speed of the robot. The motions of the flexible leg are studied using the numerical simulation. Establish the Poincarésection, and the results show that the motions change from periodic to chaotic with the changing of the frequency. From the angle of changes in system energy, the investigation is on the drive principle when the motion is chaos. Get the dominate factors in the motion through the energy attribution in the system.Base on the result of the energy analysis, robots with different structures are designed. The impacts of the modal, stiffness and the coupling angle are analyzed by the numerical simulation. And find different movement state in two modal. Simulate the robot speed under different amplitude input and research the Bifurcation and Chaos in detail. And simulate the robot motion with different load.The robots with different structure and coupling angle are manufactured, the speed is tested. Test speed of the two robots under different amplitude input, and the speed of the robot under load.

节点文献中: 

本文链接的文献网络图示:

本文的引文网络