节点文献

南海西部冷涡区域上层海洋营养盐的动力学

Nutrient Dynamics Associated with Mesoscale Eddies in the Western South China Sea

【作者】 许艳苹

【导师】 戴民汉;

【作者基本信息】 厦门大学 , 环境科学, 2009, 硕士

【摘要】 本论文从营养盐动力学的角度研究生物地球化学过程对中尺度冷涡发展不同阶段的响应。研究区域为南海西部(11°N-16°N,110°E-115°E),调查时间为2006年12月(东北季风期)和2007年8月和9月(西南季风期)。调查项目包括溶解活性磷酸盐(磷酸盐)、硝酸盐+亚硝酸盐(无机氮)、硅酸盐以及水文和生物等相关参数。由于南海西部是典型的寡营养盐海域,我们采用流动注射C18小柱富集的方法测定上层海洋的低浓度溶解活性磷酸盐,并首次成功地实现了相对比较完整的中尺度冷涡发展过程的现场观测研究。2007年8月和9月在南海西部的北部海域和南部海域先后观测到两个直径约为170 km和200 km的冷涡,命名为冷涡Ⅰ和冷涡Ⅱ。以25 m深度计,冷涡Ⅰ中心区较边缘区温度低6.8℃,盐度高0.9,密度大2.6kg m-3;冷涡Ⅱ中心区较边缘区温度低6℃,盐度高1.7,密度大2.9kg m-3。营养盐浓度自冷涡的中心区向边缘区逐渐降低:以25 m深度的磷酸盐和无机氮的浓度计,在冷涡Ⅰ中心区分别为275 nM和3.3μM,递减到边缘区的低值5 nM和<0.3μM;在冷涡Ⅱ中心区分别为265 nM和7.8μM,降低到边缘区的低值6 nM和<0.3μM。0-100 m营养盐总量冷涡中心区是边缘区的4-7倍。冷涡Ⅰ中心0-100 m磷酸盐和无机氮总量分别为54.8±6.5 mmol P m-2和792±98 mmol N m-2(n=4 stations);冷涡Ⅱ中心的磷酸盐和无机氮总量分别为66.1±9.4 mmol P m-2和1107±166 mmol Nm-2(n=4 stations)。冷涡Ⅰ和冷涡Ⅱ边缘区0-100m营养盐总量(n=1 station),磷酸盐为14.1mmol P m-2和11.5 mmol P m-2;无机氮为193.7 mmol N m-2和152mmol N m-2。东北季风期,0-100 m磷酸盐和无机氮总量分别为20 mmol P m-2和224 mmol N m-2(n-1 station)。基于冷涡的观测资料并结合冬季的数据分析,本论文对冷涡的不同发展阶段进行了初步的划分:西南季风期的冷涡处于“强化-成熟”期(冷涡Ⅱ,2007年9月1-8日),“成熟-衰退”期(冷涡Ⅰ,2007年8月15-24日),“衰退”期(冷涡Ⅰ衰退期,2007年8月25-31日)和东北季风期“没有涡”的背景场(2006年12月)。西南季风期,南海西部上层水体的氮磷比值显著高于Redfield比值;且呈现较大幅度的波动(1.44 mol mol-1)。伴随冷涡的涌升氮磷比值升高,当冷涡衰退时,氮磷比值又降回到背景值。分别为3-44 mol mol-1(冷涡Ⅱ),1-36 mol mol-1(冷涡Ⅰ),3-21 mol mol-1(冷涡Ⅰ衰退)和5-20 mol mol-1(没有涡)。氮磷比值与密度的关系表明,如果不考虑生物活动,南海深层涌升上来的水团其氮磷比值均约为13.7(s.d.=0.3)。高的氮磷比值模式,一定被产生于一个原位的生物过程,产生氮,消耗磷,或者两个过程兼而有之。我们推测是固氮,调查区域大量束毛藻的存在,以及海表观测到束毛藻的水华,支持了固氮这一假设。海流分布特征表明湄公河冲淡水区高氮磷比值固氮藻类的降解对冷涡区的影响是有限的。因此,南海西部冷涡区观测到的高氮磷比值是固氮对冷涡的响应,且高营养盐比值来源于冷涡区的原位生产,即冷涡发生时,寡营养盐海区的固氮也随之促发,氮磷比值随之出现异常高值。冷涡衰退时,氮磷比值又降回到背景值。在此基础上,我们认为:处于冷涡不同发展阶段的营养盐比值模式的显著差异,是生物固氮对不同发展阶段冷涡的不同响应导致的。冷涡驱动的深层/次表层冷水涌升上来的磷酸盐和铁,可能促使固氮的发生。西南季风期,湄公河冲淡水对南海西部影响很大,其携带的大量铁元素也可能提高固氮速率。随着冷涡发展阶段的演化,营养盐吸收百分比从32%(冷涡Ⅱ)增加到74%(冷涡Ⅰ)。基于两端员混合模型估算表明,冷涡Ⅰ和冷涡Ⅱ中的生物固氮分别提供了上层海洋氮需求总量的22.2%和17.8%。

【Abstract】 Mesoscale eddies in the ocean are believed to induce discrepancies in the biogeochemical responses at different stages of eddy development,which may result in different behaviors of nutrient dynamics.The area of this study is located between 11°N and 16°N in latitude and 110°E and 115°E in longitude in the western South China Sea(WSCS).In our study,soluble reactive phosphate(SRP),inorganic nitrogen(NO3-+NO2-,referred as N+N hereafter) and silicate(SiO3)were monitored, along with other parameters-sea surface height altimetry、hydrography and biology to examine the influence of eddy development on nutrient dynamics in the upper ocean in the WSCS.Note that for samples with low SRP concentrations(<500 nM), measurements were taken with a home-made ship-board C18 enrichment-flow injection analysis system.Two cyclonic mesoscale cold eddies were monitored in August and September 2007 in the WSCS,and were named as eddyⅠand eddyⅡ.The dimension of eddyⅠand eddyⅡwas~170 km and~200 km,respectively.Hydrographic surveys revealed that at the horizon of 25 m,the core of eddyⅠwas ca.7.6℃cooler,1.4 saltier,and 3.3 kg m-3 denser than periphery,while the core of eddyⅡwas ca.6℃cooler,1.7 saltier,and 2.9 kg m-3 denser.The concentrations of SRP or N+N decreased from the core to periphery in both cold eddies:at the horizon of 25 m,the values of SRP and N+N decreased from 275 nM and 3.3μtM of the core to 5 nM and<0.3μM of the periphery in eddyⅠ,and in eddyⅡthe values decreased from 265 nM and 7.8μM of the coteto 6 nM and<0.3μM of the periphery.The 0-100 m nutrient inventories of eddy core were 4-7 folds higher than eddy periphery.The 0-100 m SRP inventories in the core(n=4 stations) of eddyⅠand eddyⅡwere 54.8±6.5 mmol P m-2 and 66.1±9.4 mmol P m-2,and 0-100 m N+N inventories were 792±98 mmol N m-2 and 1107±166 mmol N m-2,respectively.While the 0-100 m SRP inventories in the periphery (n=1 station) of eddyⅠand eddyⅡwere 14.1 mmol P m-2 and 11.5 mmol P m-2,and 0-100 m N+N inventories were 193.7 mmol N m-2 and 152 mmol N m-2,respectively. In winter(n=1 station),0-100 m SRP inventory was 20 mmol P m-2 and N+N inventory was 224 mmol N m-2.We made a preliminary partition with eddy development:"spin up-mature" stage(September 1-8),"mature-degrading" stage (August 15-24),"relaxation" stage(August 25-31) during the southwest monsoon in 2007 and "no eddy" stage(December,as a reference) during the northeast monsoon in 2006.We observed unexpected large-amplitude fluctuations of N:P ratio of 1-36 mol mol-1(eddyⅠ) and 3-44 mol mol-1(eddyⅡ) atσθ<24.4 in the upper 100 m.As eddyⅠdecayed,N:P ratio declined back to 3-~20 mol mol-1;similar to the "no eddy" condition(5-20 mol mol-1).Plots of N:P ratio versusσθimplied that any nutrient injection from deeper South China Sea should deliver N+N and SRP at molar ratio of approximately 13.7(s.d.=0.3).The maintenance of high N:P ratio required a net uptake of SRP atσθ<24,4,and visa versa.Meanwhile,a bloom of Trichodesmiums was observed,nitrogen fixation may maintain elevated proportions of N+N relative to SRP,as compared to the Redfield ratio.Here we present a rapid change of N:P ratios at the euphotic zone with eddy development.N2-fixer sitting in the oligotrophic surface is stimulated almost instantaneously as the occurrence of eddies.N2 fixation may be triggered by a series of factors:(1) SRP and Fe injected by eddy pumping from deeper water,(2) iron from Mekong river plume.The estimated nutrient assimilated percentage varied from 32%(eddyⅡ) to 74%(eddyⅠ) with eddy development.

  • 【网络出版投稿人】 厦门大学
  • 【网络出版年期】2009年 11期
节点文献中: 

本文链接的文献网络图示:

本文的引文网络