节点文献

胶州湾中型浮游动物对浮游植物和微型浮游动物级联式摄食的初步研究

Preliminary Studies on Cascade Grazing of Mesozooplankton on Phytoplankton and Microzooplankton Community in the Jiaozhou Bay

【作者】 谭书杰

【导师】 宫相忠; 孙军;

【作者基本信息】 中国海洋大学 , 细胞生物学, 2009, 硕士

【摘要】 2007年12月至2008月11月在胶州湾的2个典型站位采样,结合Landry稀释法和改进后的Frost的直接计量法研究了不同粒径范围的中型浮游动物对浮游植物和微型浮游动物的摄食速率,并对中型浮游动物的食物组成、中型浮游动物群落和微型浮游动物群落对浮游植物群落的摄食压力进行了估算。调查期间,A站共发现浮游植物42属76种,物种丰富度和细胞丰度均以硅藻为主,且主要是一些近岸广布种和暖温带种。浮游植物细胞丰度最高峰出现在7月,为1301.52×103 cells L-1,最低值出现在4月,为17.44×103 cells L-1。优势种主要为中肋骨条藻(Skeletonema costatum)、诺氏海链藻(Thalassiosiranordenski(?)ldii)和浮动弯角藻(Eucampia zodiacus)等。B站共发现浮游植物44属83种,物种丰富度和细胞丰度同样均以硅藻为主。浮游植物细胞丰度的变化趋势表现为双周期型,最高峰出现在1月,为1257.48×103 cells L-1,次高峰出现在3月,为1137.67×103 cells L-1,最低值出现在6月和11月,分别为11.32×103cells L-1和21.77×103 cells L-1。优势种主要为中肋骨条藻(Skeletonema costatum)、丹麦细柱藻(Leptocylindrus danicus)和窄隙角毛藻(Chaetoceros affinis)等。A站和B站微型浮游动物优势种主要为百乐拟铃虫(Tintinnopsis beroidea)、急游虫(Stromdium sp.)和桡足类幼虫(Copepod nauplii)等。A站微型浮游动物个体丰度最大值出现在6月,为6.20×106 ind m-3,最低值出现在11月,为0.68×106 ind m-3。B站微型浮游动物个体丰度最大值出现在3月,为4.44×106 ind m-3,最低值出现在6月,为0.49×106 ind m-3。A站浮游植物内禀生长率介于0.38-2.58 d-1,均值0.99 d-1;微型浮游动物对浮游植物摄食率介于0.12-2.23 d-1,均值0.77 d-1;微型浮游动物对浮游植物现存量摄食压力介于19.49-1179.88%,均值225.22%;微型浮游动物对浮游植物潜在初级生产力的摄食压力介于25.96-102.06%,均值72.74%。B站浮游植物内禀生胶州湾中型浮游动物对浮游植物和微型浮游动物级联式摄食的初步研究长率介于0.45-2.21 d-1,均值1.12 d-1,微型浮游动物对浮游植物摄食率介于0.07-2.12 d-1,均值0.95 d1-,微型浮游动物对浮游植物现存量摄食压力介于10.71-771.55%,均值253.21%,微型浮游动物对浮游植物潜在初级生产力的摄食压力介于19.05-104.86%,均值78.14%。。与世界其他海区相比,胶州湾的微型浮游动物对浮游植物潜在初级生产力的摄食压力处于一般水平。Frost的直接计量法结果表明:对于A站,较小粒径范围的中型浮游动物对浮游植物的物种摄食速率介于15.13-556.67×103cells ind.-1 d-1,均值为158.48×103cells ind.-1 d-1,较大粒径范围的中型浮游动物对浮游植物的物种摄食速率介于22.32-637.01×103cells ind.(-1) d-1,均值176.12×103cells ind.-1 d-1对于B站,较小粒径范围的中型浮游动物对浮游植物的物种摄食速率介于15.28-1360.16×103cells ind.-1 d-1,均值296.63×103cells ind.-1 d-1,较大粒径范围的中型浮游动物对浮游植物的物种摄食速率介于12.72-741.93×103cells ind.-1 d-1,均值195.27-103cells ind.-1d-1。中型浮游动物对浮游植物摄食速率具有饵料丰度依赖性,在浮游植物较低的细胞丰度下,其摄食速率会随着浮游植物细胞丰度的增加而增加,达到一定阈值后随着浮游植物细胞丰度增加而降低。对于A站,较小粒径范围的中型浮游动物对微型浮游动物的物种摄食速率介于0.37-6.19×103ind.ind.-1d-1,均值2.21×103 ind.ind.-1 d-1,较大粒径范围的中型浮游动物对微型浮游动物的物种摄食速率介于0.49-10.07×103ind.ind.-1 d-1,均值3.39-103ind.ind.-1 d-1;对于B站,较小粒径范围的中型浮游动物对微型浮游动物的物种摄食速率介于0.30-9.12×103 ind.ind.-1 d-1,均值1.81×103ind.ind.-1 d-1,较大粒径范围的中型浮游动物对微型浮游动物的物种摄食速率介于0.19-10.40×103ind.ind.-1d-1,均值2.06-103 ind.ind.-1 d-1。比较中型浮游动物食物组成表明,中型浮游动物的食物组成中主要以浮游植物为主。对于A站,浮游植物占较小粒径范围的中型浮游动物食物比例介于27.44-97.49%,均值66.96%,浮游植物占较大粒径范围的中型浮游动物食物比例介于17.79-97.38%,均值59.20%;对于B站,浮游植物占较小粒径范围的中型浮游动物食物比例介于46.54-98.08%,均值81.68%,浮游植物占较大粒径范围的中型浮游动物食物比例介于48.09-98.63%,均值79.02%。但微型浮游动物也占一定的比例,在个别月份成为中型浮游动物食物的主要组成部分。对于A站,较小粒径范围的中型浮游动物群落对浮游植物群落现存量的摄食压力介于0.40-6.16%,均值1.56%,微型浮游动物群落对浮游植物群落现存量的摄食压力介于93.84-99.60%,均值98.54%;较大粒径范围的中型浮游动物群落对浮游植物群落现存量的摄食压力介于0.17-3.61%,均值0.95%,微型浮游动物群落对浮游植物群落现存量的摄食压力介于96.39-99.83%,均值99.05%;对于B站,较小粒径范围的中型浮游动物群落对浮游植物群落现存量的摄食压力介于1.36-29.85%,均值5.72%,微型浮游动物群落对浮游植物群落现存量的摄食压力介于70.15-98.64%,均值94.28%;较大粒径范围的中型浮游动物群落对浮游植物群落现存量的摄食压力介于0.30-17.03%,均值3.01%,微型浮游动物群落对浮游植物群落现存量的摄食压力介于82.97-99.70%,均值96.99%。比较中型浮游动物群落和微型浮游动物群落对浮游植物群落现存量的摄食压力表明,微型浮游动物群落对浮游植物群落现存量的摄食压力要高于中型浮游动物群落对浮游植物群落现存量的摄食压力。

【Abstract】 A preliminary study on grazing speed of different size mesozooplankton on phytoplankton and microzooplankton was carried out with feeding experiments, the Frost’s method, and the Landry dilution experiment in 2 stationsin the Jiaozhou Bay, from December 2007 to November 2008. Changes in community structure of phytoplankton and microzooplankton, grazing speed, food composition of mesozooplankton with different size range, and mesozooplankton with different size range and microzooplankton grazing pressures on phytoplankton were studied.During the survey, there were 76 phytoplankton species found in the station A, which mainly were composed of diatom. The eell abundance of phytoplankton changed dramatically in different month and the maximum value was 1301.52×103 cells L.-1, which appeared in July, while the minimum was 17.44×103 cells L-1, which took place in April. The dominant species were Skeletonema costatum, Thalassiosira nordenski(?)ldii and Eucampia zodiacus. There were 76 phytoplankton species found in the station A, which mainly were composed of diatom as the same as station A. The seasonal variation of cell abundance of phytoplankton was a typical double period’s type in station B. The first highest peaks appeared in January,the cell abundance was 1257.48×103 cells L-1.Next highest peaks was March, the cell abundance was 1137.67×103 cells L-1,lowest peaks appeared in June and November, the cell abundance separately was 11.32×103 cells L-1 and 21.77×103 cells L-1. The dominant species were Skeletonema costatum, Leptocylindrus danicus and Chaetoceros affinis. The dominant microzooplankton species were Tintinnopsis beroidea, Stromdium sp. and Copepod naupli. The abundance was lowest and averaged 0.68×106 ind m-3 for microzooplankton in November, while there was a maximum value (6.20×106 ind m-3) in June. For station B, the highest peaks appeared in March, which averaged value was 4.44×106 ind m-3, while the lowest peaks appeared in June, which averaged value was 0.49×106 ind m-3.Through the Landry dilution experiment, the instantaneous growth rate of phytoplankton ranged from 0.38-2.58 d-1 at 0.99 d-1 average; ingestion rate of microzooplankton on phytoplankton varied from 0.12-2.23 d-1 in average of 0.77 d-1; the percentage of phytoplankton standing crop ingested by microzooplankton ranged from 19.49-1179.88% at 225.22% average; and the percentage of phytoplankton potential production ingested by microzooplankton varied from 25.96-102.06% in average of 72.74%. For station B, the instantaneous growth rate of phytoplankton ranged from 0.45-2.21 d-1 at 1.12 d-1 average; ingestion rate of microzooplankton on phytoplankton varied from 0.07-2.12 d-1 in average of 0.95 d-1; the percentage of phytoplankton standing crop ingested by microzooplankton ranged from 10.71-771.55%% at 253.21% average;and the percentage of phytoplankton potential production ingested by microzooplankton varied from 19.05-104.86% in average of 78.14%.Compared with the similar studies in other waters around the world,the grazing pressure of microzooplankton in the Jiaozhou Bay is at the middle levels.Through the Frost’s method ,for station A, the specific grazing speed of the smaller size mesozooplankton on phytoplankton varied from 15.13-556.67×103cells ind.-1d-1 ind.-1 d-1, in average of 158.48×103cells ind.-1 d-1, while the specific grazing speed of the bigger size mesozooplankton on phytoplankton varied from 22.32-637.01×103cells ind.-1d-1, in average of 176.12×103cells ind.-1 d-1. For station B, the specific grazing speed of the smaller size mesozooplankton on phytoplankton varied from 15.28-1360.16×103cells ind.-1d-1, in average of 296.63×103cells ind.-1d-1, while the specific grazing speed of the bigger size mesozooplankton on phytoplankton varied from 12.72-741.93×103cells ind.-1d-1, in average of 195.27×103cells ind.-1d-1. The grazing speed of different size mesozooplankton on phytoplankton was food-density dependent, increasing with phytoplankton cell abundance up to a threshold value,and then decreasing regardless of the cell abundance increase. For station A, the species specific grazing speed of smaller mesozooplankton on microzooplankton varied from 0.37-6.19×103 ind. ind.-1 d-1, in average of 2.21×103 ind. ind.-1 d-1, the species specific grazing speed of bigger mesozooplankton on microzooplankton varied from 0.49-10.07×103 ind. ind.-1 d-1, in average of 3.39×103 ind. ind.-1 d-1, for station B, the species specific grazing speed of smaller mesozooplankton on microzooplankton varied from 0.30-9.12×103 ind. ind.-1 d-1, in average of 1.81×103 ind. ind.-1 d-1, the species specific grazing speed of bigger mesozooplankton on microzooplankton varied from 0.19-10.40×103 ind. ind.-1 d-1, in average of 2.06×103 ind. ind.-1 d-1. Food composition of different size mesozooplankton was mostly phytoplankton, for station A, taking 27.44-97.49% ,in average of 66.96% of the the smaller mesozooplankton total food, and taking 17.79-97.38%, in average of 59.20% of the the bigger mesozooplankton total food;for station B, taking 46.5498.08%,in average of 81.68% of the the smaller mesozooplankton total food, and taking 48.09-98.63% ,in average of 79.02% of the the bigger mesozooplankton total food. Microzooplankton was less taken, but it was a major food source in some month. For station A, the grazing pressure of smaller size mesozooplankton community on phytoplankton community standing crop varied from 0.40-6.16 %, in average of 1.56%, the grazing pressure of microzooplankton community on phytoplankton community standing crop varied from 93.84-99.60 %, in average of 98.54%,and the grazing pressure of bigger size mesozooplankton community on phytoplankton community standing crop varied from 0.17-3.61%, in average of 0.95%, the grazing pressure of microzooplankton community on phytoplankton community standing crop varied from 96.39-99.83%, in average of 99.05%;for station B, the grazing pressure of smaller size mesozooplankton community on phytoplankton community standing crop varied from 1.36-29.85%, in average of 5.72%, the grazing pressure of microzooplankton community on phytoplankton community standing crop varied from 70.15-98.64%, in average of 94.28%,and the grazing pressure of bigger size mesozooplankton community on phytoplankton community standing crop varied from 0.30-17.03%, in average of 3.01%, the grazing pressure of microzooplankton community on phytoplankton community standing crop varied from 82.97-99.70%, in average of 96.99%.Comparison in grazing pressure on phytop lankton by mesozooplankton and microzooplankton,the microzooplankton built much higher pressure on standing phytoplankton crop than that mesozooplankton did in the Jiaozhou Bay.

节点文献中: 

本文链接的文献网络图示:

本文的引文网络