节点文献

液压电机叶片泵的电磁场及温度场的数值解析

The Numerical Analysis of Electromagnetic Field and Temperature Field in Hydraulic Motor-vane Pump

【作者】 许丹丹

【导师】 冀宏;

【作者基本信息】 兰州理工大学 , 机械电子工程, 2009, 硕士

【摘要】 传统液压动力单元的效率低、噪声大、泄漏等缺点已经成为制约其发展和应用的主要问题。液压电机叶片泵是将电动机和液压叶片泵整合为一体的一种新型液压动力单元,具有结构紧凑、噪声低、效率较高和无外泄漏等优点。由于电动机转子内部嵌入了叶片泵,浸油电机转子内径增大。并且其处于浸油环境,因此电机的磁场强度、气隙磁密、铁芯损耗等都将产生变化。本论文以电机泵中的浸油电机为研究对象,采用理论分析、数值解析和试验相结合的方法,对浸油电机和普通电机的静态和瞬态电磁场进行解析,发现起动过程中浸油电机漏磁现象要比普通电机严重,导条中的涡电流使得转子上的磁力线主要集中在转子的上部;对不同转子内径的浸油电机进行了电磁场的数值解析,结果表明转子内径增大时电机转速变慢,转子内径在60mm~105mm之间时,浸油电机空载性能较好。并对液压电机叶片泵的温度场进行计算和分析。论文的主要内容:第1章,阐述了本课题研究的背景和意义;概述了液压电机泵的研究及发展概况、有限元分析方法在电机分析和设计中的应用现状及其对本课题研究的应用价值;提出了本论文的主要研究内容。第2章,概述了电磁场的基本理论和电磁场数值计算方法、有限元法的原理和求解方法;基于电机电磁场有限元计算与分析的理论基础,建立了液压电机叶片泵中浸油电机性能分析的理论依据。第3章,针对提出的液压电机叶片泵结构模型,阐述了其基本工作原理。基于液压电机叶片泵的基本假设,运用有限元方法对普通电机和浸油电机的瞬态和静态电磁场进行了解析。获得了无负载时浸油电机和普通电机的磁力线及磁感应强度的分布、磁通密度随着转子转动角度的变化曲线。计算表明普通电机的铁芯损耗都高于浸油电机;当转子内径增大时,气隙磁密的波形变化较大,谐波较大。第4章,阐述了浸油电机的等效电路及电磁参数计算方法。介绍了浸油电机的参数、边界及其模型生成的过程。对不同转子内径时浸油电机的性能进行了仿真,发现转子内径在60mm到110mm之间,电机空载性能变化不大。第5章,阐述了液压电机叶片泵温度场计算的基本理论,针对液压电机叶片泵的温度场进行了分析,计算表明液压电机叶片泵的冷却效果很好。并对计算得出的功率损耗进行了试验验证。并简单介绍液压电机叶片泵的试验系统及其原理。

【Abstract】 Traditional hydraulic power unit is low efficiency and high noise and so it limits its use and development at present.A new design which called the hydraulic motor-vane pump (HMP) is put forward.The electric motor and vane pump are combined as a whole unit which don’t need coupler.The vane pump is skillfully integrated into the rotor of electric motor inside.Therefore,the intensity of magnetic,the air-gap induction and core losses will produce such changes.In the thesis,the numerical simulation、theoretical analysis and experimental analysis method combined together are used to investigate the static and transient electromagnetic field of electric motor in HMP and induction motor.It turns out the phenomenon of flux leakage in the electric motor of HMP is more serious than induction motor during starting time,and flux lines on the bar of rotor gathered on the top of rotor because of eddy current in the bar.The speed becomes low as the increase of internal diameter.There is little change on the non-load performance of electric motor in HMP when the diameter of rotor is among 60mm and 105mm.The temperature field of HMP is analyzed.The main contents of the thesis are as follows:In chapter 1,the background and significance of this thesis is presented.The history and current research progress on hydraulic motor pump are reviewed.The application of the finite element method to investigate the electric motor is summarized.Lastly,the main research subjects are presented.In chapter 2,the basic theory and numerical analysis about the electromagnetic field are summarized.The principle and method of finite element are introduced mainly.The theory of the performance of electric motor in HMP,basing on the finite element method in electromagnetic field,is established.In chapter 3,the basic working principle of HMP is expounded.The electromagnetic field both Transient and static on the three-phase asynchronous motor and motor of HMP is analyzed in detail.The distribution of magnetic flux density is simulated,and the curve of the density as the rotating angle is drawn.The core losses in the three-phase asynchronous motor is higher than motor of HMP.The flux density in air-gap and the harmonic wave changes greatly as the increase of the rotor diameter.In chapter 4,equivalent circuit and electromagnetic parameters of motor in HMP is introduced.The setting of parameter and boundary of motor in HMP is detailed.There is little change on the performance of electric motor of HMP when the diameter of rotor is among 60mm and 110mm.In chapter 5,the theory of temperature field is stated.The temperature field of HMP is analyzed.We can draw a conclusion that the effect of oil cooling is better than that of wind cooling.And the computing power loss of HMP is compared with the experimental results.There is a error between computing results and experimental results.The test method of hydraulic motor pump and test devices are introduced.

节点文献中: 

本文链接的文献网络图示:

本文的引文网络