节点文献

积分几何中几个问题的研究

Several Problems’s Studies in Integral Geometry

【作者】 曾春娜

【导师】 周家足;

【作者基本信息】 西南大学 , 基础数学, 2009, 硕士

【摘要】 在本文中,我们主要讨论了三个问题.首先,d维欧氏空间Rd上凸体的双弦幂积分;其次,由平坦凸体的平均曲率积分的性质讨论了投影体的外平形体的平均曲率积分;最后,拓展了陈省身的一个积分公式.本文第二章对凸体的双弦幂积分进行了研究.双弦幂积分的概念是在弦幂积分论基础上建立的一个新的概念,从某个角度看,弦幂积分是双弦幂积分的特殊情形.双弦幂积分所获得的几何信息更丰富.本文得到了双弦幂积分的一些重要不等式,得到了以下结果:定理2.5设K是Rd上的凸体,m,n是非负整数,则定理2.6设K是Rd上的凸体,m,n,p是非负整数且0≤m≤n≤p,则定理2.7双弦幂积分有下列不等式成立:特别地,当m>n.定理2.8双弦幂积分有下列不等式成立:定理2.9双弦幂积分有下列不等式:当n是整数时,特别地,当n是偶数时,当n是奇数时,在本文的第三章,我们讨论了Rd上凸体在Lr上正交投影后然后再做外平行体的平均曲率积分问题.这也是一类很有意思的问题,Santal(?)、周家足教授、江德烁、李泽芳等都进行过研究.其中,周家足教授和江德烁研究了在Rd中凸体先做外平行体再往平面Lr上作投影体的平均曲率积分问题,作者受到他们的启示研究了在Rd中凸体先往平面Lr上作投影体再在平面Lr上做外平行体的平均曲率积分问题,这是两个不同的问题,得到的结果也不一样,作者得到了下列定理:定理3.4设K为d维欧氏空间Ed中具有C2光滑边界(?)K的凸体,K’r为r维平面Lr(?)Ed的投影体,(K’rρ为K’r在Ed中的外平行体.Mir((?)(K’r))(i=0,1…,r-1)是K’r作为平坦凸体的平均曲率积分,令Mid((?)(K’rp,)(i=0,1…,d-1)是(?)(K’rρ。在Ed中的平均曲率积分且(?)(Krρ∈C2.因此,我们有1)当i<d-r-1,则其中,Ⅵr(K’r)表示K’r的r维体积.2)当t=d-r-1,则3)当i>d-r-1,则其次,设△是两过固定o点的相交线性子空间所夹的夹角,△在相交线性子空间上的积分扮演着非常重要的角色,这属于积分几何中一类重要的问题:用已知的几何不变量来清楚地表示几何量关于运动的密度的积分.在本文的第四章,我们拓展了陈省身公式(为上述积分中的一个),得到了两相交线性子空间夹角的任意次幂在相交线性子空间上的积分,即下列定理:定理4.1设Lq[0]是过定点O的固定的q维平面,Lq[0]是过O点活动的p维平面.设p+q-d>0,△是这两个线性子空间的角度,dLd-q[0]2d-q-p表示dL2d-q-p[0]的子空间dLd-p。的密度,则我们有

【Abstract】 In this paper, we mainly investigate three problems, one is that the double chord-power integrals of a convex body in Rd. Secondly, by using characters of the flattened convex body’s mean curvature integrals, we discuss about the mean curvature integrals of the outer parallel body of a projected convex set in Ed. Finally, we extend a formula of S. S. Chen.In the second chapter, we study the double chord-power integrals of a convex body in Rd. The concept of double chord-power integrals is a new concept on the base of chord-power integrals. The chord-power integrals is a special case of the double chord-power integrals. And double chord-power integrals get more geometric information. In this paper we obtain the following geometric inequalities:Theorem 2.5. Let K be a convex body in Rd, m, n are non-negative integer, thenTheorem 2.6. Let K be a convex body in Rd, m, n,p are non-negative integer and 0≤m≤n≤p, thenTheorem 2.7. The double chord-power integrals have the inequalitiesSpecial casewhen m > n,Theorem 2.8. The double chord-power integrals have the inequality Theorem 2.9. The double chord-power integrals have the inequalities:when n is integer.especially, when n is odd.when n is even.In the third chapter we discuss the mean curvature integrals of a projected convex set of the outer parallel body of in Ed. This is a interesting problem, Santal(?) ,Professor Zhou, Jiang Deshou, Li Zefang and so on investigate the problem, especially, Professor Zhou and Jiang Deshou study the mean curvature integrals of the outer parallel body of a projected convex set in Ed. Author study the mean curvatureintegrals of a projected convex set of the outer parallel body of in Ed. This are two different problems, the results gotten is different, we obtain the following theorem:Theorem 3.4. Let K be a convex body in Ed with C2-smooth boundary (?)K,Kr be projection on the r-plane Lr (?) Ed, and (Krρbe the outer parallel body of KT in the distanceρin Ed. Mir((?)(Kr))(i = 0, l,…,r-1) be the mean curvature integrals of (?)(KR) as a convex surface of KR and let MId((?)(Krρ, )(i = 0,1,..., d-1) be the mean curvature integrals of (?)(Krp as a flattened convex body of Ed and (?)(Krp∈C2. Then we have1) If i < d - r - 1, then where Vr(Kr) denotes the r-dimensional volume of Kr.2) If i = d - r - 1, then3) If i> d-r-1, thenOtherwise, Let△be the angle between two intersected linear subspaces through a fixed point O, the integral of the angle△over the intersected subspace play an important role in integral geometry, this integral is basic problem in integral geometry: find explicit formulas of the integrals of geometric quantities over the kinematic density in terms of known integral invariants. In the fourth chapter, We extend an integral formula of S. S. Chen (the problem is belong to the above integra)and obtain an integral of n-power of the angle of two intersected linear subspaces. Following, we introduce the theorem:Theorem 4.1. Let Lq[0] be a fixed q-plane through a fixed point O and let Lp[0] be a moving p-plane through O.Assume that p + q > d. Let△be the angle between the two linear subspaces, express dLd-p[0]2d-p-q be the density of dLd-p[0] as a subspace of the fixed dL2d-p-q[0], then we havewhere N is integer, Oi is the surface area of the i-dimension unit sphere.

  • 【网络出版投稿人】 西南大学
  • 【网络出版年期】2009年 10期
节点文献中: 

本文链接的文献网络图示:

本文的引文网络