节点文献

高炉热风炉蓄热室传热数学模型研究

The Study about Heat Transfer Mathematical Model for Hot Blast Stove of Bast Fumace

【作者】 刘兵

【导师】 郑忠;

【作者基本信息】 重庆大学 , 动力工程及工程热物理, 2008, 硕士

【摘要】 热风炉是现代化高炉炼铁工艺中的重要设备之一,其任务是稳定地向高炉提供热风。建造适合高炉炼铁生产的热风炉,提高热风炉的传热效率,可有效提高进入高炉的热风风温,降低焦比,进而增加高炉炼铁产量并降低炼铁生产成本。热风炉蓄热室内的传热计算对热风炉的设计有重要作用,建立热风炉蓄热室传热数学模型可为热风炉的设计提供依据,因此,开展热风炉蓄热室传热数学模型研究具有重要意义。通过对热风炉传热特点的分析,建立高炉热风炉蓄热室传热数学模型。传热数学模型的研究主要围绕热风炉的设计和校核计算进行,包括稳态传热数学模型和非稳态传热数学模型。稳态传热数学模型主要用于解决设计计算问题,涉及燃料燃烧和设计计算模型,可根据蓄热室的整体传热计算确定热风炉尺寸、蓄热面积、蓄热室半径等;非稳态传热数学模型包括柱坐标系下的一维非稳态传热数学模型,以及直角坐标系和柱坐标系下的二维非稳态传热数学模型,通过计算温度场的分布特征来进行热风炉的校核计算,判别热风炉设计的合理性,以及调整设计参数来满足设计要求。采用混合有限差分算法对一维非稳态传热数学模型的微分方程进行差分,采用追赶法(TDMA算法)对数学模型进行数值求解,使得计算精度比基于显式差分或隐式差分的求解方法更高;采用交替隐式差分法对二维非稳态传热数学模型进行差分后,采用TDMA算法进行模型的数值求解,克服了其它求解方法的稳定性受时间步长限制的不足。与文献中的应用实例对比分析来验证热风炉蓄热室传热数学模型及求解方法的正确性。以文献中给定的燃料种类、燃料成分、蓄热室内气体流速、格砖物性等参数为输入参数,进行的设计计算,得到的热风炉尺寸、蓄热面积与文献结果基本吻合;相应的校核计算得到了热风炉蓄热室内格砖、烟气和热风的温度分布情况,计算结果与文献基本吻合,表明建立的模型和求解方法是正确有效性。因此,本文建立的热风炉蓄热室传热数学模型可为热风炉的设计提供依据,并能为热风炉设计优化提供手段。

【Abstract】 Hot stove is one of the most important equipments in the modern blast furnace ironmaking process, and its task is to supply hot air to the blatst fiirnce steadily. Building suitable hot stove can improve the effieciecy of heat transfer and the temperature of the entering gas and reduce coke ration, increase the yield of the blast furnace and decrease the cost of ironmaking, and produce huge economic benefits. Calculation of heat transfer in the regenerator of the hot stove is crucial to the design of the hot stove, which can be based on the heat transfer mathematical model of the regenerator, so the research of the heat transfer mathematical model has important signifinace.Analyzing the heat transfer characteristics of the hot sove, the heat transfer mathematical model of the regenerator is buildt, the research of this model is mainly to design the hot stove and verify the resluts .There are two models: the steady heat transfer mathematical model and the non-steady heat transfer mathematical model. The steady model includes the mathematical model of fuel combustion calculation and the mathematical model of design calculation, the models are mainly to slove the the problems of size of the hot stove, area and the radius of the regenerator etc; the non-steady model includes one-dimensional non-steady model in cylindrical coordinates and two-dimensional non-steady model in rectangular and cylindrical coordinates, checking whether the design of the hot stove is suitable by observing the distribution of the temperature, and adjusting the design parameters to meet the design requirements.On the basis of the mixed finite difference algorithm is used for the differential equation of the one-dimensional heat transfer mathematical model, adopting the TDMA algorithm to numerically solve the models to abtain a higher accuracy of the calculation than the solution methods of explicit difference or implicit difference; the interleaving implicit difference is used for the two-dimensional non-steady, adopting the TDMA algorithm to numerically solve the model, and overcome the defects of time and stability limits of the other solution methods.Comparatively analyzing applied examples in the literatures to verify the accuracy of the heat transfer mathematical model of the regenerator and the solution method. Material variety, fuel composition, gas flow rate in regenerator, physical properties of the lattice brick and so on given by the literatures are used as the inputting parameters to do the design calculation, and the size of the hot stove, area of heat storage are consist with the literatures;corresponding checking calculations are done to get the tempreture distribution condition of the lattice brick, smoke, hot air in regenerator of the hot stove, the results are consist with the literatures, so from the research results mentioned above, it is obvious to find that the models and the solution method are corrent.Therefore, the heat transfer mathematical models in the regenerator of the hot stove in this thesis can provide evidences for the design of the hot stove, and provide means for designing optimization of the hot stove.

  • 【网络出版投稿人】 重庆大学
  • 【网络出版年期】2009年 06期
节点文献中: 

本文链接的文献网络图示:

本文的引文网络