节点文献

双层超晶格的磁性质

Magnetic Properties of Double-layer Superlattice

【作者】 梁静

【导师】 邱荣科;

【作者基本信息】 沈阳工业大学 , 材料物理与化学, 2007, 硕士

【摘要】 磁性材料是应用越来越广泛一种功能材料。随着镀膜技术的发展,电子器件的尺寸已进入到微/纳米尺度。当薄膜厚度减小至超薄膜时,其结构、微结构、热力学性质和磁性质均与大块材料有很大不同。在基础磁性理论和应用技术上,磁性超品格的研究具有重大的意义。特别是,磁性超晶格为我们提供了一个人造新材料的途径,通过人工调制超晶格的组成和几何特征,就能得到我们所需要的磁性材料。同时,理论上对磁性超晶格的磁学性质进行分析,对新的功能材料的研究有指导意义。本文采用Heisenberg模型为基础,对双层亚铁磁和铁磁超品格的磁性质进行理论研究。利用线性自旋波近似、付立叶变换和格林函数技术分别计算出双层亚铁磁和铁磁超晶格的各种磁性质,分析系统参数(自旋量子数、层间交换耦合系数、层内交换耦合系数、各向异性参数、外磁场)对磁性质的影响。结果表明:系统参数对此系统的磁性质有着重要的影响。双层亚铁磁性超晶格和双层铁磁性超晶格系统都存在两支能谱,且系统的各个参数都对这两支能谱有着重要的影响。系统的自旋量子数S1(层间交换耦合系数J12)和S2(J21)对能隙的影响相同,能隙随着S1(J12)和S2(J21)的差值的增加而增大。对于亚铁磁超晶格来说,两层的各向异性参数D1和D2对能隙的影响不同,外磁场对能隙有一定的影响。而对于铁磁性超晶格而言,两层的各向异性参数对能隙的影响相同,能隙随着D1和D2差值的增加而增大,外磁场对能隙没有影响。对于双层亚铁磁性超晶格和双层铁磁性超晶格,低温磁矩随着温度的升高而减小,随着自旋量子数、层内耦合系数、各向异性参数的增大而增大。内能和比热随着自旋量子数、层间耦合系数的绝对值、层内耦系数以及各向异性参数的增加而减小。对于亚铁磁性超晶格来说,内能随着磁场的增强而减小,磁场对比热几乎没有影响。对于铁磁性超晶格来说,内能和比热随着外磁场的增加而减小。

【Abstract】 Magnetic material as one kind of functional material is applied more and more widely. With the rapid development of technique of plating, the dimensions of electronic devices are extended to the scale of micro/nano. When films are diminished to extra thin films, all the structure, micro-structure, thermodynamic and magnetic properties are very different from those of the bulk ones. To the basic magnetic theories and applied technologies, it is very significant to research magnetic superlattices. Especially, a method to make artificial materials is obtained from magnetic superlattices theories, and the needful materials can be obtained by changing its ingredients and geometric structure. At the same time, the analysis of magnetic properties of magnetic superlattice in theories gives some significant guidances to the study of new functional materials.Magnetic properties of double-layer ferromagnetic/ferromagnetic superlattices are researched on the basis of Heisenberg model. By linear spin wave approximation, Fourier transformation and Green’s function technology, the magnetic properties of ferrimagnetic superlattices and ferromagnetic superlattices are calculated and the effects of the system parameters on their magnetic properties are also analyzed, such as: spin quantum number, interlayer exchange couplings, intralayer exchange couplings, anisotropy constant and external magnetic field. The result shows that system parameters have an important effect on its magnetic properties. Two branches of energy spectra exist in both ferrimagnetic/ ferromagnetic superlattices, and the parameters of the system have important effect on these two branches. S1(J12) and S2(J21) have the same effect on the energy gap, and the energy gap increases with increasing the difference between S1(J12) and S2(J21). For the ferrimagnetic superlattice, the anisotropy constants D1 and D2 have the different effect on the energy gap, and external magnetic field has an effect on it. For the ferromagnetic superlattice, the anisotropy constants D1 and D2 have the same effect on the energy gap, and external magnetic field has no effect on it. For double-layer ferromagnetic and ferromagnetic superlattices, the magnetization decreases with increasing temperature, and increases with increasing spin quantum number, intralayer exchange couplings and anisotropy constant. The Internal energy and the specific heat decrease with increasing spin quantum numbers, absolute values of interlayer exchange couplings, intralayer exchange couplings and anisotropy constants. For ferrimagnetic superlattice, the internal energy decreases with increasing external magnetic field, and external magnetic field has no effect on the specific heat. For ferromagnetic superlattice, the internal energy and the specific heat decrease with increasing external magnetic field.

【关键词】 海森堡模型超晶格自旋波
【Key words】 Heisenberg modelSuperlatticeSpin-wave
节点文献中: 

本文链接的文献网络图示:

本文的引文网络