节点文献

遗传预扭模类与遗传扭模类

Hereditary Pretorsion Classes and Hereditary Torsion Classes

【作者】 唐思斯

【导师】 张顺华;

【作者基本信息】 山东大学 , 基础数学, 2008, 硕士

【摘要】 在研究*-模的过程中,R.Colpi等人研究了*-模的生成类Gen(RP)何时成为一个好的范畴,即何时取得子模封闭或者扩张封闭.本文去掉*-模条件的限制,研究了Gen(RP)成为一个取子模封闭和扩张封闭的范畴(即成为遗传扭模类),模RP需满足的条件与具有的相关性质。本文共分三章:第一章,给出了文章的背景及文中要用到的一些基本概念。第二章讨论了Gen(RP)成为遗传预扭模类和遗传扭模类的充分必要条件以及此时它的一些性质。主要结果如下:定理2.1.4设RP,S=End(RP),那么以下条件等价:(1)Gen(RP)是遗传预扭模类.(2)PS是平坦的S-Mittag-Leffler模,Gen(RP)=Pres(RP),且TH保持Gen(RP)中的满射.(3)P3是平坦模,且Stat(P)=Gen(RP).定理2.2.1设RP,S=End(RP),Gen(RP)是遗传预扭模类,则Gen(RP)是遗传扭模类当且仅当Gen(RP)(?)Ker P(?)SExtR1(P,-).定理2.2.2设RP,S=End(RP),则Gen(RP)是遗传扭模类当且仅当以下两个条件同时成立:(1)PS是平坦的S-Mittag-Leiffler模;(2)Gen(RP)=Pres(RP)(?)Ker P(?)SExtR1(P,-).当以上成立时,Gen(RP)对应的无扭模类是Ker HomR(P,-).定理2.2.10设R环,RP是R上的有限长度模,则Gen(RP)是遗传扭模类当且仅当:存在拟投射生成子RT使得Gen(RP)=Gen(RT)(?)Ker ExtR1(T,-).定理2.3.5设R是左Artin环,RP是任意模,S=End(RP),则Gen(RP)是遗传扭模类当且仅当以下两个条件同时成立:(1)PS是有限生成投射模;(2)Gen(RP)=Pres(RP)(?)Ker P(?)SExtR1(P,-).定理2.3.10设R是Artin环,RP是R上的有限生成模,Gen(RP)是遗传扭模类.那么对所有M∈Gen(RP),都有P0-res.dim(M)=pdSHP0M.(其中P0为定理2.2.10中得到的拟投射生成子,S=End(RP0).推论2.3.11设R是Artin环,RP是R上的有限生成模,Gen(RP)是遗传扭模类.如果对所有M∈Gen(RP),都有P0-res.dim(M)≤n,那么gdS≤n(P0为定理2.2.10中得到的拟投射生成子,S=End(RP0).第三章研究了当Gen(RP)成为遗传(预)扭模类时,环S=End(RP)上的模类Cogen(SP*)具有的性质和环B=End(PS)=BiEnd(RP)上的模类Gen(BP)的性质.主要结论如下:定理3.1.2设RP,S=End(RP),若Gen(RP)是遗传预扭模类,那么:(1)(Ker P(?)S-,Cogen(SP*))是由Copres(SP*)余生成的扭论;(2)(Ker P(?)S-,Cogen(SP*))是遗传扭论.定理3.2.1若Gen(RP)是R-Mod中的遗传预扭模类,那么Gen(BP)是B-Mod中的遗传预扭模类(B=BiEnd(RP)).

【Abstract】 R.Colpi gave some conditions that Gen(RP) is closed under submodules and extension when RP is a *-module. We gave the coditions that Gen(RP) is closed under submodules and extension to be a hereditary torsion class, when RP is an arbitrary module. And we studied some properties of it. This paper is divided into three chapters.In the first chapter, wo introduced the background of this paper and some definitions.In the second chapter, we discussed the necessary and sufficient conditions for that Gen(RP) is a hereditary (pre)torsion class. And then gave some properties of it.The main results as following:Theorem 2.1.4 Let P be a left R-module and lot S=End(RP), then the following conditions are equivalent:(1)Gen(RP) is a hereditary pretorsion class.(2)PS is flat and S-Mittag-Leffler, Gen(RP)=Pres(RP), and TH preserves cpimorphismin Gen(RP).(3)PS is fiat and Gen(RP)=Stat(P)Theorem 2.2.1 Let. P be a left R-module and let S=End(RP), if Gen(RP) is a hereditary pretorsion class, then Gen(RP) is a hereditary torsion class if only if Gen(RP)(?)Ker P(?)ExtR1(P,-).Theorem 2.2.2 Let P be a left R-module and let S=End(RP), then Gen(RP) is a hereditary torsion class if and only if the following coditions are satisfied:(1)PS is flat and S-Mittag-Leffler;(2)Gen(RP)=Pres(RP)(?)Ker P(?)SExtR1(P, -).The acording torsion-free class is Ker HomR(P, -) when those conditions above arc satisfied.Theorem 2.2.10 Let R be a ring and let P be a module of finite length over R, the Gen(RP) is a hereditary torsion class if and only if there is a quasi-progenerators RT satisfying Gcn(RP)=Gen(RT)(?)Ker ExtR<sup>1(T,- )Theorem 2.3.5 Let R be a Artin ring and let P be a left R-module, S=End(RP), then Gen(RP) is a hereditary torsion class if and only if the following coditions are satisfied:(1)Ps is a finitely generated projective module;(2)Gen(RP)=Pres(RP)(?)Ker P(?)SExtR1(P,-).Theorem 2.3.10 Let R be a Artin ring and let P bo a finitely generated moduleover R. If Gen(RP) is a hereditary torsion class, then P0-res.dim(M)=pdSHp0M for all M∈Gen(RP) (P0is the quasi-progenerator in Theorem 2.2.10).Corollary 2.3.11 let P be a finitely generated module over a Artin ring R, and Gen(RP) is a hereditary torsion class. If P0-res.dim(M)≤n for all M∈Gen(RP) (Pois the quasi-progenerator in Theorem 2.2.10). then gdS≤n (S=End(RP0)).In the third chapter, we inverstigated some other hereditary (pre)torsion classes over the endomorphism and the biendomorphism ring of RP. The main results as following:Corollary 3.1.2 Let P be a left R-module and let S=End(RP), if Gen(RP) is a hereditary pretorsion class, then:(1)(Ker P(?)S-,Cogen(SP*)) is a torsion class cogenerated by Copres(SP*);(2)(Ker P(?)S-,Cogen(SP*)) is a hereditary torsion class.Corollary 3.1.2 If Gen(RP) is a hereditary pretorsion class in R-Mod, then Gen(RP) is a hereditary pretorsion class in B-Mod (B=BiEnd(RP)).

  • 【网络出版投稿人】 山东大学
  • 【网络出版年期】2009年 01期
节点文献中: 

本文链接的文献网络图示:

本文的引文网络