节点文献

纳米MOS器件中的量子效应分析及其模拟

Analysis and Simulation of Quantum Mechanical Effects in Nano-scale MOSFETs

【作者】 苏银涛

【导师】 杜磊; 梁燕萍;

【作者基本信息】 西安电子科技大学 , 材料物理与化学, 2008, 硕士

【摘要】 本课题描述了纳米体MOS器件中的量子隧穿效应和能量量子化效应的物理机制,用自洽求解薛定谔-泊松方程组的方法模拟了直接隧穿导致的栅隧穿漏电流和能级量子化导致的栅电容退化。采用基于自洽求解薛定谔-泊松方程组的量子修正方法,研究分布于量子化离散子能级上的载流子反型层电荷密度分布和栅极电压之间的关系。建立考虑了能量量子化对载流子分布影响的C-V特性的量子修正模型,并模拟预测了纳米MOS器件的C-V特性,模拟表明纳米MOS器件的栅电容显著退化。同时通过该量子修正方法,量子修正了栅极隧穿的解析结果,模拟预测了不同栅极和不同绝缘材料对栅隧穿漏电流的影响;模型的结果与长沟MOSFETs的实验结果和短沟MOSFETs的数值计算的结果吻合很好,从而验证了文中的分析;同时模拟结果也验证了高κ栅介质取代栅氧化物的优越性。本文对发展物理基础模型和充分诠释及模拟小尺寸MOS器件的研究提供有力的引导,为革新器件观念和纳米MOS时代的有创意的结构设计做了基础铺垫。

【Abstract】 In this thesis, the physical mechanism and the quantum corrected model of the advanced nano-scale bulk MOSFETs is represented. The gate leakage current induced by direct tunneling and the degradation of the gate capacitor induced by energy quantization are simulated using the self-consistent method by solving the coupled Poisson and Schr?dinger equations.The quantum mechanism effects on the carrier distribution are studied by self-consistent solving the coupled Poisson and Schr?dinger equations. The relationship between the charge density and gate bias in MOSFETs is then simulated. Based on these results, the quantum capacitor-voltage model including the quantum mechanism effects is derived, and the capacitor-voltage characteristics of the bulk MOS devices are simulated. The analytical results of the gate tunneling are modified in quantum theory, the impact of the different gate electrodes on the gate direct tunneling current is simulated as well as the different gate insulation materials. Results from this model show a good agreement with the experimental results and the numeric simulation results of both long-channel and short-channel MOSFETs, and the simulation results shows the advantages of high-κgate dielectrics over traditional oxide.The simulation results in this thesis provide the strong guides for the development of the physics-based models and the comprehensive understanding to the scaled MOS devices, and pave the way to the novel device concepts and the innovative structure design in nano-MOSFET age.

节点文献中: 

本文链接的文献网络图示:

本文的引文网络