节点文献

机电一体化的液压冲击器控制系统研究

Research on the Control System of Hydraulic Impactor Base on Mechatronics

【作者】 林红

【导师】 杨国平;

【作者基本信息】 上海交通大学 , 车辆工程, 2008, 硕士

【摘要】 本文在传统纯液压控制液压冲击器的工作原理和输出特性基础上,分析了其在调能和调频方面存在的不足和有待发展的地方,并结合氮气压力反馈原理,将机电一体化控制引入到本文研究的气液联合式液压冲击器控制系统当中,称之为机电控制液压冲击器。在文章中并详细介绍了机电控制液压冲击器的结构方式、工作原理和控制方法。基于此控制的液压冲击器一方面可以手动调节其冲击能和冲击频率,另一方面也可以根据工作对象的物理性质的不同,机电控制液压冲击器自动调节其单次冲击能和冲击频率,这取决于控制系统的控制方式。为了便于计算机控制,机电控制液压冲击器取消了传统纯液压控制系统中的换向阀,取而代之的是以高速开关阀作为先导阀、二通插装阀作为控制阀组成的配流换向系统,文章详细介绍了配流换向系统的设计思路和受控方式,而且配流换向系统的设计,综合考虑了简便冲击器的工作原理和便于实现冲击能、冲击频率的调节。为了进一步了解机电控制液压冲击器液压控制系统的工作特性和输出特性,文章中建立液压回路的数学模型、分析了液压控制系统的工作效率、针对性介绍了机电控制的气液联合式液压冲击器工作时的动力学模型。在计算机控制系统中,首先阐述了本文控制系统硬件的组成;接着软件设计时以活塞冲击后反弹时引起的氮气室压力变化并将压力变化转化为活塞反弹速度作为输入信号,引用模糊控制策略,实现机电控制液压冲击器的工作频率和冲击能的无级调节。基于本文理论设计思想,搭建了机电控制系统的实验平台,制作出了机电控制液压冲击器样机原型机,且实验时分为两步进行,首先将液液压冲击器由传统纯液压控制转变为机电控制,实现手动的冲击能和冲击频率在一定范围的有级调节;然后在第一步的基础上实现机电控制液压冲击器根据工作对象物理性质的不同而自适应调节其冲击能和冲击频率。本文在上述基础上进行了大量实验,试验效果和采集到的数据表明完全可以实现液压冲击器冲击能和冲击频率的无级调节;同时也证明了本文理论研究的正确性。对于目前冲击器的智能化研究和液压冲击器产业的发展具有重要的意义。

【Abstract】 The article analyzes insufficient of energy and frequency’s adjustment for traditional hydraulic impactor which is controlled only by hydraulic pressure base on its principle of work and operating performance, Pointes out places that need developed. And use the method of nitrogen pressure feedback, introduces mechatromics control strategy into the control system of gas-hydraulic impactor researched in the paper, which called mechanical-electrical control impactor.The paper introduces detailly the mechanical-electrical control impactor ’s structure、principle of work and control method. On the one hand, the impactor’s work frequency and single impact energy could be adjusted by operator; On the other hand, it also could adjust automatically hydraulic impactor′s work frequency and single impact energy according to the different physical property of work target, which mainly depend on control mode of computer system.For ease of computer control, the impactor use flat valve which is composed by high speed switch valve for first pilot valve and two cartridge inserted valves for second pilot valve, instead of conventional hydraulic cross valve, the paper illuminates the flat valve’s design thought and controlled method, the simplification of work’s principle and the facility of work frequency and single impact energy’s adjustment are considered fully during the process of design. In order to further understand the operational characteristic、output parameter and working efficiency of the impactor’s hydraulic control system, Mathematical model about hydraulic circle、 dynamics model that aim at the impactor are founded separatively in the article. As for the computer control system, the design of hardware is introduced at frist, then when designing the software, it adoptes piston’s maximum bounce velocity which computated through nitrogen chamber’s pressure change quantity resuled from bounce after after piston impact chisel as input singal, and coordinates fuzzy control strategy, making the hydraulic impactor′s independent stepless control for work frequency and impact energy come true.Based on the theoretical design thought as above, the experimental platform for control system about mechanical-electrical impactor has been built and the new prototype impactor has been manufactured. The experiment is carried on through twe setp, Firstly, transforms traditional pure hydraulic control to mechanical-electrical impactor, achieving the work frequency and impact energy’s adjustment in a certain scope by operator; Secondly, making the hydraulic impactor′s intellectualized work come true according to work target.Making full use of theoretical knowledge and experimental platform, the paper has carried on much experiment, experiment process and collected result indicate the system could adjust hydraulic impactor′s work frequency and single impact energy, which has improtant significance to impactor’s intellectualized research and the hydraulic impactor industry’s development presently.

  • 【分类号】TP273
  • 【被引频次】15
  • 【下载频次】1008
节点文献中: 

本文链接的文献网络图示:

本文的引文网络