节点文献

粗粒化技术处理含油废水试验研究

Study on Treatment of Oily Wastewater by Coalescence Technology

【作者】 张小艳

【导师】 张少辉; 李孟;

【作者基本信息】 武汉理工大学 , 市政工程, 2007, 硕士

【摘要】 目前,我国大部分油田已进入石油开采的中期和后期,原油含水率达70~80%,有的油田甚至高达90%。油水分离产生大量的含油污水,如不经处理直接排放,会对环境造成污染危害,严重时将威胁人民的生命安全,造成经济损失。因此,开发适合我国油田实际情况、高效经济的污水处理及回用技术已成为油田污水处理站改造和新建的重要问题。利用粗粒化方法对含油废水进行一级处理,可以大大降低含油量,再进行二级处理和深度处理,能使油份及各项指标达到低渗透油藏对回注水水质的要求。本课题通过粗粒化材料的确定、反应器的选型的对比实验,发现疏油性陶瓷填料的粗粒化性能明显优于其他材料,并且陶瓷填料堆积式粗粒化反应器的除油率高于斜板式反应器,且有效周期也要明显较长。根据实验结果,探讨分析了聚结反应机理及其动力学,得出当聚结机理为润湿聚结和碰撞聚结同时作用时,聚结效率可得到大幅度的提高的结论,并提出聚结填料的表面性质和空间构成是影响聚结效率的重要因素。为了更清楚的了解粗粒化技术,本课题进行了影响因素的试验。结果表明,1~3mm的填料粒径可得到较好的粗粒化效果;碱性、高温有利于聚结;上向流更有利于粗粒化;在流速为6m/h时,可得到较好的粗粒化效果。结合试验确定的参数,设计了内循环连续流粗粒化反应器。通过实验室试验和油田现场试验得出,该反应器在选用1.6~3mm的疏油性陶瓷填料,上升流速为6m/h时,油份去除率高达80%,且持续12个小时以上。另外,将整个填料层反冲洗干净的时间约为20min,单独反冲洗有效粗粒化填料层的时间为5~8min。与传统的粗粒化装置相比,这种装置具有截污量大,周期长,反洗水耗小等特点。该装置处理过的油田水大大降低了含油量,减轻了后续工艺的负荷,能够满足低渗透油藏对回注水水质提出的更高要求。

【Abstract】 At present, most oilfields in china have entered into mid-late oil exploitation stage. Crude oil moisture content was generally 70-80%, even reach 90%. Large amount of oily wastewater was produced from oil-water phase separation process. Discharge of untreated wastewater would put hazardous risk to environment and public health. Therefore, development of highly effective economical treatment and reusing technologies has become an important problem of the modification and establishment of oily wastewater processing station. The per-treatment of oily wastewater by coalescence can reduce the oil content greatly, and then secondary and deep treatment can make oil content and other indexes reach the standard of water quality for reinjection in the low permeability oil reservoir.Through the comparison experiment on the selection of coalescence material and reactor type, this paper discovered the efficiency of coalescence of ceramic packing is better than others significantly, and the oil removal efficiency of heap type reactor is higher than swash plate type as well as effective particle velocity period. The mechanism and reaction dynamics of coalescence were explored through the experimental results. Results showed that as the collision coalescence and the wetting coalescence mechanism were coexistence and the efficiency of coalescence was enhanced remarkably. The surface property and spatial constitution form of the fillers had important effect on the oil removal efficiency of coalescence.In order to understand coalescence technology more clearly, the experiment of influence factors was carried out. The results showed that there will be better efficiency of coalescence at particle size of l~3mm; alkaline condition and high temperature favored coalescence reaction; up-flow direction can accelerate coalescence; it’s resulted the better efficiency of coalescence at 6m/h.Combined with the parameters determined by experiment, internal recycling continuous flow reactor for coalescence was designed. The oil removal efficiency of this reactor can be high up to 80% for over 12 hours, when particle size of ceramic packing at 1.6-3mm and the velocity of the up-flow at 6m/h. Otherwise, it takes about 20 minutes to make the total packing layer clean by backwashing, and 5-8 minutes to backwash the effective packing layer for coalescence.Compared with traditional coalescence equipments, this equipment has advantages of larger capacity of pollutant removal, longer period, and no medicine needed. The oil content in oilfield water treated by the equipment was greatly decreased, which relieved the loading of the sequenced processes, and the quality of the effluent water satisfied the higher requirement of injected water in exploiting low-permeability reservoir.

  • 【分类号】X703.1
  • 【被引频次】14
  • 【下载频次】594
节点文献中: 

本文链接的文献网络图示:

本文的引文网络