节点文献

快速机动小卫星总体设计及控制技术研究

Study on System Design and Control Technology for Small Satellite with Rapid Maneuver Missions

【作者】 杨维维

【导师】 陈小前;

【作者基本信息】 国防科学技术大学 , 航空宇航科学与技术, 2006, 硕士

【摘要】 随着航天实践的不断深入,对空间快速机动技术的需求日益增强,具备快速机动能力的小卫星成为未来航天器的重要发展方向之一。论文以“快速机动小卫星”为研究对象,采用多学科设计优化方法对其进行了总体优化设计,并针对快速机动小卫星的自主、快速等特点,对其关键分系统之一的控制分系统进行了初步设计与研究。首先,系统研究了CSSO、BLISS 2000和CO三种两级多学科设计优化过程。针对CO实现过程中存在的问题,提出了基于动态罚因子及正交试验设计的改进协同优化过程(DPCO),算例测试表明了改进的优越性。通过减速器和飞机两个实例的研究,分析了DPCO、CSSO及BLISS 2000三种优化过程的特点,并总结了各自的适用性。其次,进行了基于DPCO的快速机动小卫星总体设计研究。针对快速机动小卫星的任务特点,建立了快速机动小卫星的学科模型,以系统成本最小为目标构建总体参数优化模型。利用DPCO对快速机动小卫星MDO问题进行集成和求解。优化结果验证了DPCO的有效性,提高了设计水平。再次,在建立基于导引星的轨道相对运动动力学模型的基础上,研究了Lyapunov控制规律,并采用多方法协作优化算法(MCOA)对控制参数进行优化。在快速机动小卫星总体设计方案的基础上,对卫星的升轨机动及相位调整两类机动任务进行了数学仿真,并用STK软件演示了升轨机动过程,仿真研究表明了快速机动小卫星控制策略设计的可行性。最后,详细介绍了姿态控制系统设计方案,研究了用于飞轮控制系统的Lyapunov控制规律,并采用MCOA对控制参数进行优化,在快速机动小卫星总体设计方案的基础上,对卫星的姿态稳定控制及姿态机动控制进行了数学仿真,仿真结果验证了设计方案的可行性。总之,论文系统研究了MDO优化过程,提出了DPCO,并将其应用于快速机动小卫星总体优化设计,为探索MDO方法在卫星总体设计中的应用进行了有益的尝试,同时对快速机动小卫星的控制技术进行了初步研究,采用MCOA对控制器进行参数优化,达到了快速机动控制的目的。论文对我国开展空间快速机动飞行器的研究具有一定的参考价值。

【Abstract】 With the development of space technology, requirements for spacecrafts with rapid maneuver ability become more and more intense. A small satellite with rapid maneuver missions is discussed in this thesis. Multidisciplinary Design Optimization (MDO) is adopted for its’system design. Combined with the specific characters of this type satellite described as“autonomy and rapid”, control sub-system as one of the key sub-systems is studied.Firstly, three types of MDO procedures are studied, including CSSO (Concurrent Subspace Optimization), BLISS 2000 (Bi-Level Integrated System Synthesis 2000) and CO (Collaborative Optimization). Aimed at solving some problems in carrying out CO procedure, an improved CO using dynamic penalty factor and orthogonal experimental design named DPCO is proposed, and its efficiency is tested by a typical optimization problem. The characters of these three MDO procedures are analyzed by two design optimization problems—Speed Reducer and Plane concept design. And the applicability of each procedure is concluded.Secondly, according to the characters of rapid maneuver small satellite, disciplinary models are analyzed; and a parameter optimization model is set up to minimize the cost of satellite. The MDO problem is integrated and solved by DPCO, and advantages of DPCO are verified.Thirdly, a Lyapunov-based orbital controller is studied on the basis of orbital dynamics of spacecraft expressed by two-body motion with guide satellite. The numerical simulations for maneuver missions are presented on the basis of foregoing satellite system design scheme. And the maneuver process is also demonstrated by the software STK (Satellite Tool Kit).The results show that the mission requirements are satisfied and the controller design is feasible. Finally, the attitude control system is introduced in details and a Lyapunov-based control law is discussed for flywheel system. MCOA (Multimethod Collaborative Optimization Algorithm) is adopted to optimize the control parameters of this controller with the object of minimizing control time. Then numerical simulations are presented on the basis of foregoing satellite system design scheme for attitude stabilization control and maneuver control. The results show that the scheme is feasible.To sum up, three types of MDO procedures are discussed. Based on it, DPCO is proposed to solve the system design problem of small satellite with rapid maneuver mission. All of these are beneficial tries for application of MDO in satellite system design. The control system is also discussed; MCOA is adopted to optimize the control parameters, and the rapid maneuver mission on orbit is fulfilled. This thesis is a good foundation for further research on space maneuver system.

  • 【分类号】V423.41;V448.2
  • 【被引频次】11
  • 【下载频次】997
节点文献中: 

本文链接的文献网络图示:

本文的引文网络