节点文献

超磁致伸缩致动器参数设计及其特性研究

Research on Design of Giant Magnetostrictive Actuator and Its Characteristics in Application

【作者】 丁胜华

【导师】 史大光;

【作者基本信息】 山东科技大学 , 精密仪器及机械, 2006, 硕士

【摘要】 超磁致伸缩材料是20世纪中期开始出现的一种新型功能材料,与传统的磁致伸缩材料相比具有磁致伸缩应变大、响应速度快、能量密度高等特点,因其优异的性能、良好的应用前景,一时间成了世界各国研究关注的热点。本文根据超磁致伸缩材料的性能特点及其在工业领域的应用特点,利用国产超磁致伸缩材料,在对以往微位移致动器研究的基础上,设计了一种精密控制的超磁致伸缩微位移致动器。文章主要在超磁致伸缩微位移致动器结构、驱动线圈电磁特性、温度抑制与补偿方法、驱动电源等方面进行了理论分析与设计。 在超磁致伸缩致动器的结构设计时,充分考虑到了闭合磁路的原则,这样能够大大减少漏磁,在激励电流相同的条件下,棒内磁场强度也有所提高。设计的线圈长度大于驱动棒长度,不仅保证了驱动棒所处磁场的均匀性,而且在获得相同强度的磁场时减小了稳定工作时的电流。本论文运用线圈形状优化设计方法对驱动线圈结构进行了优化设计,使线圈能在限定的尺寸下获得更高的电磁转化效率;通过对温度抑制与补偿机构原理与特点的对比讨论,笔者选择了简单易行的组合温控方法,结合软件补偿方法,基本上可以消除驱动线圈发热使构件产生热变形对输出位移的影响,从而保证其精度;在驱动电源设计中充分考虑了材料的特点,采用高效的开关调整型恒流源电路原理,并选择功率MOSFET设计了高频斩波功放电路,实验证明这种恒流源电路适于超磁致伸缩致动器的驱动,具有较高的稳定度。 在对超磁致伸缩微位移致动器进行结构设计及理论分析后,研究中利用制作的样机对致动器及数控恒流源进行了特性实验,包括静态特性实验和初步的动态特性实验,并在此基础上对实验数据进行了分析,从而提出了改进位移量输出线性度的几点措施。其中静态特性实验由预压力特性实验和静态位移输出特性实验组成,动态特性实验由阶跃响应输出特性实验、三角波信号响应特性实验组成。最后概括了全文的主要研究结论,并展望了今后需进一步开展的工作。

【Abstract】 Giant Magnetostrictive Material, which came forth in the middle of last century and is also called GMM, is a new kind of intelligent material. Contrast with the former magnetostrictive materials, it has the following merits: good magnetic retroactivity, rapid response speed, and high energy density. In view of its excellent performance and promising foreground in applications, the research on GMM has become the focus of attention all over the world at a time. Based on the characteristics of the GMM and the requirements in industrial application, this article tends to design a more precise controlled Giant Magnetostrictive Actuator (GMA). The article focus on structure design of GMA, analysis and design of electromagnetic characteristics of power fields, heat deformation controlling and compensating methods, and driving power system which adapts to GMA.On structure design aspect, the closed principle for electromagnetic circuit around the GMM is taken into account, so magnetic leakage is decreased greatly and magnetic intensity around GMM is also improved. Because the length of the power coil designed is longer than that of the GMM pole, magnetic symmetry is kept well and a higher intensity of magnetic field is obtained under the same current. On coil design aspect, optimization design method is put into use to keep higher electromagnetic conversion efficiency. After discussing several methods that can be used to prevent and compensate the deformation caused by the heat from the power coil, we select a better combined measure. With the help of controlling software compensating method, the heat deformation influence on output precision is decreased greatly. On amplificatory power system aspect, based on the characteristic of driving power of GMA and the principle of chopping in high frequency to keep constant current, a good digital controlled driving power using power MOSFET is designed.After analysis and design, the trait of the GMA is tested by experiments using our model machine, including static and dynamic. On base of the data of

  • 【分类号】TH703
  • 【被引频次】3
  • 【下载频次】455
节点文献中: 

本文链接的文献网络图示:

本文的引文网络