节点文献

关于Hamilton半群的研究

A Study of Hamilton Semigroup

【作者】 张化生

【导师】 李师正;

【作者基本信息】 山东师范大学 , 基础数学, 2006, 硕士

【摘要】 本文给出Hamilton半群的基本性质,并且给出Hamilton半群的自同态半群与半直积,最后给出了Hamilton半群的自同构群和Hamilton半群的强右零带.具体内容如下:第一章给出引言和预备知识.第二章,首次给出Hamilton半群的子半群,同态像仍是Hamilton半群的证明,以及Hamilton半群对集合的作用.主要结论如下:定理2.1左(右)H-半群的子半群仍是左(右)H-半群.定理2.3左(右)H-半群的同态像集合仍是左(右)H-半群.定理2.6在左(右)H-半群S上,aρb (?) ak = bl,其中,a,b∈S,k,l∈Z+,则ρ是S上的最大幂等分离同余.命题2.9在左H-半群S上,Green关系R是幂等纯同余;在左H-半群S上, Green关系L是幂等纯右同余.即Re = ES,Le = ES.命题2.17设左H-半群S,其中自同态半群EndS作用于S上,则x∈S的轨道x|-(?) {y∈S | y与x的指数相同}.第三章给出了Hamilton半群的自同态半群也是Hamilton半群,并定义了降次Hamilton半群,讨论了Hamilton半群的自同态半群与降次Hamilton半群的半直积,直积.主要结论如下:定理3.1任意在左(右)H-半群S的自同态集合EndS,关于乘法(fg)(x) = f(x)g(x),f,g∈End S,x∈S是一个左(右)H-半群.定理3.6设S是任意一个左H-半群,S1 = {ai,i∈I},S2 = {bβ,β∈A},S3 = {e(p),p∈P},

【Abstract】 In this dissertation, we characterize the Hamilton semigroup;be-sides ,we give a characterization of endomorphism semigroup and semi-direct product of Hamilton semigroup;finally,we give a definition andcharacterization of automorphism group and strong right zero band ofHamilton semigroup. The main results are given in follow.In Chapter 1, we give the introduction and preliminaries.In Chapter 2, we give the proof of subsemigroup and homo-morphic image which are still Hamilton semigroup;besides we discussthe action of Hamilton semigroup on a set .The main results are givenin follow.Theorem 2.1 The subsemigroup of left (right) Hamilton semi-group is still left (right) Hamilton semigroup.Theorem 2.3 The homomorphic image set of left (right) Hamil-ton semigroup is still left (right) Hamilton semigroup.Theorem 2.6 On the left (right) Hamilton semigroup S,aρb (?)ak = bl,where a,b ∈ S,k,l ∈ Z+,then ρ is a maximum idempotent-separating congruence on S.proposition 2.9 On the left Hamilton semigroup S,the R ofGreen relation is idempotent pure left congruence;On the left Hamil-ton semigroup S,the L of Green relation is idempotent pure right con-gruence.That is Re = ES,Le = ES.In Chapter 3,we give the conclusion that the homomorphic imageof Hamilton semigroup is Hamilton semigroup;besides,we give a defi-nition descent order of Hamilton semigroup and discuss the semi-directproduct of the homomorphic semigroup of Hamilton semigroup and thedescent order of Hamilton semigroup.The main results are given in follow .Theorem 3.1 The the homomorphic set of Hamilton semigroupEndS on Hamilton semigroup S on the product(fg)(x) = f(x)g(x),f,g ∈ EndS,x ∈ S,is still a left (right) Hamilton semigroup.Theorem 3.6 S is a left Hamilton semigroup,S1 = {ai,i ∈ I},S2 = {bβ,β ∈ A},S3 = {e(p),p ∈ P},f is an endomorphism on the S,then(1)f |S1: S1 ?→ S, (2)f |S2: S2 ?→ S \ S1, (3)f |S3: S3 ?→ ESand be propitious to(4)f(aiaj) = f |S1 (ai)f |S1 (aj), ai,aj ∈ S,(5)f(bβai) = f |S2 (bβ)f |S1 (ai), ai,bβ ∈ S,(6)f(aibβ) = f |S1 (ai)f |S2 (bβ), ai,bβ ∈ S,(7)f(xe(p)) = f |Sk (x)f |S3 (e(p)), x,e(p) ∈ S,k ∈ {1,2,3}.is a map.On the other hand ,if f |S1,f |S2,f |S3 is a map as above,then f is ahomomorphism map.Theorem 3.9 The semi-direct product EndS ×α S of endomor-phic semigoup EndS of the left Hamilton semigroup S and the descentorder of left Hamilton semigroup S is a left Hamilton semigroup, wherex ∈ S ,f ∈EndS,xf = f(x).Theorem 3.13 The direct product S × S of the descent orderof left Hamilton semigroup S of the left (right) Hamilton semigroup Sand itself is a left (right) Hamilton semigroup .In chapter 4,we mainly discuss automorphism of Hamilton semi-group is a group,what’more we give the decomposition of direct productof Hamilton semigroup;besides,we characterize the relation of the au-tomorphism of automorphism of Hamilton semigroup to twe Hamiltonsemigroup. The main results are given in follow.Theorem 4.1 Let S =i∈Iaiα∈Abαp∈Pep be a left Hamiltonsemigroup.AssumeS1 = {i∈Iai }, S2 = {α∈Abα }, S3 = {p∈Pep },AS1 ,AS2, AS3 are automorphism group of S1,S2,S3 individually,thenautomorphism group of AS automorphic AS1 ×AS2 ×AS3 .That is ASAS1 × AS2 × AS3.Theorem 4.7 If the automorphism group AS,AS of left (right)Hamilton semigroup S, S are automorphic,then S/ρ S /ρ.In chapter 5,we mainly discuss left Hamilton semigroup formata strong right zero band on the product and this strong zero band isa left Hamilton semigroup,beside the idempotents of format a strongright band.Theorem 5.1 Assume S is a a strong right band of Sα,α ∈B,where B is a right band , Sα are all left Hamilton semigroup,then Sis left Hamilton semigroup.

  • 【分类号】O152.7
  • 【下载频次】29
节点文献中: 

本文链接的文献网络图示:

本文的引文网络