节点文献

非线性方程边值问题的解及其应用

【作者】 王永庆

【导师】 刘立山;

【作者基本信息】 曲阜师范大学 , 应用数学, 2005, 硕士

【摘要】 非线性泛函分析是现代分析数学的一个重要分支,因其能很好的解释自然界中的各种各样的自然现象受到了越来越多的数学工作者的关注。其中,非线性边值问题来源于应用数学和物理的多个分支,是目前分析数学中研究最为活跃的领域之一。本文利用锥理论,不动点理论,Leggett-williams不动点定理:Krasnoselskii不动点定时等研究了几类微分方程奇异多点边值问题解的情况,得到了一些新成果。根据内容本文分为下列三节: 本文第一节中,研究了一类多点边值问题 正解的存在性,其中: (H1)q(t)∈L1[0,1],q(t)≥0,(?)t∈[0,1]; (H2)f∈C([0,1]×[0,+∞),[0,+∞)); (H3)ai≥0,bi≥0,sam from i=1 to m-2 ai<1,sam from i=1 to m-2 bi<1,p(t)∈C[0,1],且p(t)>0,(?)t∈[0,1]; (H4)存在非负连续函数 ai(t),gi(y)(i=1,2),t∈[0,1],y∈[0,+∞),满足integral from 0 to 1 (q(t)ai(t)dt)>0,且对(?)t∈[0,1],有r>0,0≤y≤r时a1(t)g1(y)≤f(t,y),R>0,y≥R时f(t,y)≤a2(t)g2(y); (H4*)存在非负连续函数 ai(t),gi(y)(i=1,2),(?)t∈[0,1],y∈[0,+∞),满足integral from 0 to 1 (q(t)ai(t)dt)>0,且a1(t)g1(y)≤f(t,y)≤a2(t)g2(y)。 我们得到了如下结果: 定理1 若(H4)满足,且

【Abstract】 Nonlinear functional analysis is an important branch of morderm analysis mathmatics, because it can explain all kinds of natural phenomenal, more and more mathematicans are devoting their time to it.Among them, the nonlinear boundary value problem comes from a lot of branches of applied mathematics and physics, it is at present one of the most active fields that is studied in analyse mathematics. The present paper employs the cone theory, fixed point index theory,Leggett-williams fixed point theorem and Krasnoselskii fixed point theorem and so on, to investigate the existence of positive solutions of several classes of differential equations singular m-point boundary value problem. The obtained results are either new or intrinsically generalize and improve the previous relevant ones under weaker conditions. The paper is divided into three sections according to contents.In the first Section, we shall study a class of m-point boundary value problemsThe following conditions hold:(H1) q(t) ∈ L1[0,1], q(t) ≥ 0,(?) t∈ [0,1];(H2)f∈C([0,1]×[0,+∞),[0,+∞));(H3) ai ≥ 0, bi ≥ 0, ∑i=1m-2ai < 1,∑i=1m-2bi < 1, p(t) ∈ C[0,1],and p(t)>0,(?)t∈[0,1] ;(H4) there exist nonnegative functions ai(t), gi(y)(i = 1,2), t ∈ [0,1], y ∈ [0, +∞), satisfy ∫01q(t)ai(t)dt > 0,and (?)t∈ [0,1], (?)r > 0,if 0 ≤ y ≤ r then a1(t)g1(y) ≤ f(t,y); if R>0,y≥R then f(t,y) ≤ a2(t)g2{y);(H4*) there exist nonnegative functions ai(t),gi(y)(i = 1,2), t ∈ [0,1], y∈ [0, +∞), satisfy ∫01 q(t)ai(t)dt > 0,and a1(t)g1(y) ≤ f(t, y) ≤ a2(t)g2(y).We obtain the following result: Theorem 1 If (H4) hold,andwhere λi(i = 1,2) are the first eigenvalue of Ti defined by (2.1.6), then BVP (2.1.2)has at least a positive solution. Theorem 2 If (H4?) hold,andwhere λ2 is the first eigenvalue of T2 defined by (2.1.6).then BVP (2.1.2)has at least a positive solution.Remark 1 If p(t) ≡ 1,then t/(p(t))≥∫0t1/(p(s))ds, (?)t ∈ [0,1].Remark 2 When p(t) = 1,q(t) = 1,f(t,y) = a(t)f(y), we obtain the same results with [11] under weaker condition,so in fact this paper of theorem includes and popularizes the relevant results of [11].By making use of Leggett-williams fixed point theorem,we obtain the exitence of two positive solutions of the m-point BVPThe following conditions hold:(#1) di > 0, bt > 0, 0 < Yh=i ai < !? EI^2 &i < 1; (F2)/€C([0,+oo),[0,+oo));(H3) a(t) E La[0,1], a(t) > 0, V t e [0, l],and 0 < /on o(t)rfi < +oo; (tf4) p(t) € C[0,l],p(t) > 0,^ > /o^yds.V t 6 [0,l],and if -72 6i ^ 0 thendx 1 ^ f1 dx \ /?* rfa;We obtain the following result:Theorem 1 If there exist constantO < a < b < c, such that / satisfy:(#5) :/M > f, c < W < ^c;(Jf7) : /(w) > 2, 0 <u; < a.then BVP (2.2.1) has at least two positive solutions yi,y2,and we have a < Hj/jH < 6 < ||j/2||,7(2/2) < c.Remark 1 If p(£) is decreasing ,then (H4) is satified.In the second section we shall utilize the the index of fixed pointed to set up the existence of positive solution of a m-point boundary value problem with p-Laplacian{<t>p{u’))’ + a(t)f(t, u) = 0, 0 < t < 1,?Z? 3.1.4cm(0) - pu’(0) = 0, u(l) = } at1=1where 4>p{s) is p — Laplacian function,^(s) is inverse function to 0p(s),i.e 0P = |s|p-2s, p > 1, J + i = 1, 0 < -ei < ... < U-2 < 1, a > 0, P > 0, a2 + (32 > 0.The following conditions hold:(^2) nonnegative function a(i) 6 C(0,1), 0 < Jo a(s)ds < +00, and there exists Xq G (^m-2,1) such that a(x0) > 0;(H3) B = a{l- ZZ’i2 ?*&) + P(l- Etf <k) > 0.We obtain the following result:Theorem 1 Suppose one of the following hold:(H4) : 3 pi,p2 £ (0, +oo), and px < 7p2, such that Z^1 < $p(m),(H5) : 3 pi,pi € (0, +00), and px < p2, such that f£2 < <&p(m),then BVP (3.1.4)has at least a positive solution. Theorem 2 Suppose one of the following hold: (H6) : 3 pi, p2, P3 e (0, +oo), and pi < 7p2, p2 < p3)such that(H7) : 3 pi, p2, P3 G (0, +oo), and pi < p2 < 7p3,such that f£2 < $p(m), f%px > $p(^7)>u $" Au, V u G d KP2, f!*3 > 3>P(M7). then BVP (3.1.4)has at least two positive solutions.Remark2 Whenp = 2, m — 3,under conditions hmu&gt;0+ ^^, limu+00+ ^ one equal 0 the other equal +00,[20] obtained the existence of a positive solution of BVP (3.1); When a = 1,(3 = 0,we improve [22] to singular conditions.In the third section, by making use of the fixed point theorem of cone expansion or compression type , we set up the existence of positive solutions for third-order three-point boundary value problem with semipositonenonlinearity’ u’"(t) - \f(t, u,u’) = 0, 0<t< 1,u(l) = fiu(ri).Where 0 < /?, 77 < 1.The following conditions hold:(Hi) f : [0,1] x [0,+00) x (—oo,0] —? R satisfy Caratheodory conditions,and there exist M(t) 6 L^O, 1], M(t) > 0 such thatf(t,u,v)>-M(t)

  • 【分类号】O175.8
  • 【下载频次】52
节点文献中: 

本文链接的文献网络图示:

本文的引文网络