节点文献

Fe、Ni、Zr纳米晶体微观结构与力学性能的分子动力学模拟

The Molecular Simulation of Microstructure and Mechanical Properties of Nanocrystalline Fe, Ni and Zr Metals

【作者】 肖时芳

【导师】 胡望宇;

【作者基本信息】 湖南大学 , 材料物理与化学, 2004, 硕士

【摘要】 纳米晶体材料是指由晶粒尺寸在1—100nm的微晶粒组成的多晶体系。由于它具有独特的性能而备受关注。本文采用Voronoi元胞法构建纳米晶体初始位形,应用分子动力学弛豫技术和分析型嵌入原子方法(AEAM)多体势模拟纳米晶体Fe、Ni和Zr的微观结构和力学性能。从原子能量、径向分布函数和局域晶序等角度对纳米晶体的结构进行分析。 对Fe、Ni和Zr纳米晶体微观结构模拟表明:晶界结构与平均晶粒尺寸基本无关。随着平均晶粒尺寸降低,晶界所占比例增加,晶粒内部品格扭曲加剧,系统有序度愈加接近晶界的结构有序度。由于晶界原子间的结合较晶粒内部弱,纳米晶体的结合能较常规晶体低。受晶格扭曲和晶界比例增加的影响,纳米晶体的密度小于理想晶体密度。 对Fe、Ni纳米颗粒模拟表明:受自由表面的影响,纳米颗粒的结合能比同尺度的纳米晶体的结合能更低。受表面张力的作用,纳米颗粒出现收缩,且随着颗粒尺寸的降低,收缩量增加,晶格常数降低。 对Fe、Ni、Zr纳米晶体单向拉伸形变模拟表明:小品粒尺寸纳米晶体的弹性模量小于普通多晶体,随着晶粒尺寸的降低,纳米晶体的弹性模量下降。纳米晶体的力学强度随着晶粒尺寸的减小而减小,屈服强度与晶粒尺寸间存在反Hall-Petch关系。小晶粒尺寸纳米晶体内部很少存在位错,纳米晶体的塑性变形主要依靠晶界滑移和晶粒的转动来实现。 纳米晶体Fe的单一轴向压缩模拟表明,纳米晶体的压缩形变过程表现为三个典型的特征区域:弹性形变阶段、塑性流变阶段和应变强化阶段。纳米晶体材料在塑性流变阶段表现出极好的压缩延性。纳米晶体压缩形变过程也主要是通过晶界的滑移和晶粒的转动来实现的。

【Abstract】 Nanocrystalline materials are polycrystals with mean grain size ranging from 1nm to 100nm. Due to its unique properties, great attention to nanocrystalline materials has been increased in past years. In the present paper, the initial structural models of nanocrystallites are constructed with Voronoi cell method. The microstructure and mechanical properties of nanocrystalline Fe, Ni and Zr are simulated with the molecular dynamic (MD) simulation and the analytic embedded-atom method (AEAM). The microstructures of nanocrystallites are analyzed with atomic energy method, radius distribution function and common-neighbor analysis technique.The simulation result of microstructures of nanocrystallite Fe, Ni and Zr reveal that the structure of grain boundary in nanocrystalline is almost independent on average grain size. With reducing grain size, the fraction of grain boundary increases and the lattice distortion in grain interior enhances, and the structural difference between grain boundary and grain interior diminishes gradually. As the bonds between grain-boundary atoms are weaker than atoms in grain interior, the cohesive energy of nanocrystalline materials is lower than general microcrystal and decreases with reducing average grain size. Affected by the lattice distortion in grain interior and the high proportion grain boundary, the density of nanocrystallite can’t approach that of the perfect crystal.The simulation result of nanoparticle Fe and Ni indicate that the cohesive energy of nanoparticle is lower than that of nanocrystallite with the same grain size for the free surface of nanoparticle. Under the function of surface tension, the nanoparticles show lattice contraction, and with reducing the particle size, the contraction increases and the lattice constant of nanoparticle decreases.The uniaxial tension simulations of nanocrystalline Fe, Ni and Zr show that the elastic modulus of nanocrystallite with small average grain size is lower than the conventional microcrystal and decreases with reducing grain size. The mechanical strength of nanocrystalline decrease with grain size reducing and there exists a reverse Hall-Petch relation between the yield stress and the mean grain size. As known from the dislocation theory, dislocations seldom appear in the grain interior, and the plasticdeformation of nanocrystallite mainly carries out by the grain boundary sliding and grain rotation.The uniaxial compression simulation of nanocrystalline Fe indicates that the compressive deformation process of nanocrystallite can be described as three characteristic regimes: quasi-elastic deformation, plastic flow deformation and strain strengthening regimes. During the plastic flow deformation process, the nanocrystallite show very good compressive ductibility. As discussed in the tensile deformation, the deformation mechanisms in the compressive deformation of nanocrystallite are mainly from atomic sliding and rotation of grain boundary.

  • 【网络出版投稿人】 湖南大学
  • 【网络出版年期】2004年 04期
  • 【分类号】TB383
  • 【被引频次】4
  • 【下载频次】734
节点文献中: 

本文链接的文献网络图示:

本文的引文网络