节点文献

碳/锡复合物和钴基复合氧化物的制备与贮锂性质研究

Synthesis and Lithium Storage Properties of Carbon-Tin Composites and Cobalt-based Composite Oxides

【作者】 艾常春

【导师】 孙聚堂;

【作者基本信息】 武汉大学 , 无机化学, 2004, 硕士

【摘要】 锂离子电池采用锂离子存贮材料取代金属锂,改善了锂电池由于枝晶生成所造成的安全隐患及循环性能差的缺点,保留了锂电池高电压的优点,同时还兼具能量密度大,重量轻,体积小,循环寿命长,无记忆效应,环境效益好等优点,可以满足现代信息技术对电池小型高能的需求,是近来发展最快的新型化学电源。 锂离子电池发展史上的每一次重大突破都是由于新材料的研制和新思想的应用。现代电池技术中用作锂离子电池负极材料的主要是各种碳素材料(石墨、硬炭、软炭以及各种热解树脂碳),但这类材料的贮锂容量很低(如石墨理论比容量仅为372 mAh/g),而且还存在一定的安全隐患。因此人们在努力改进现有碳材料的同时也在寻找一些性能优良的可替代材料。锡基和钴基负极材料由于具有较高的能量密度和安全性能好等优点,引起了研究者的极大兴趣。 本论文的工作重点是将碳材料和锡基负极材料的优点结合起来,通过芳香羧酸锡盐或其他芳香羧酸衍生物的热解得到新型的性能优良的锡碳复合物负极材料: 通过邻苯二甲酸锡的热解得到了新型的碳/锡氧化物复合材料。实验证明,与在空气中分解得到的产物相比,同样充放电条件下在惰性气氛中分解得到的碳/锡氧化物复合材料的首次不可逆容量有所降低,但循环性能不如前者。在0.01~1.5 V之间循环时,后者首次循环效率为33.12%,第十周后充电容量保持率为60.7%;前者首次循环效率仅为30.87%,十周后充电容量保持率为76.5%。 通过在惰性气氛下热解1,8-萘二甲酸锡得到了新型的金属锡/碳复合材料,试验了该复合物在不同电压范围内的充放电行为。该复合物在0.01~1.0V、0.01~1.5 V和0.01~2.0 V之间充放电时,20周循环后充电容量保持率分别为17%、34.8%和28.8%。结果证明材料在0.01~1.5 V电压范围内充放电时性能可以得到最佳体现。 通过在惰性气氛下热解苝环化合物得到了一种新型柱状碳。这种碳材料在0.01~1.5 V之间循环时,首次放电比容量为506.4 mAh/g,充电比容量为272.1 mAh/g,首次循环效率为53.7%,30周后充电容量保持率为95.6%,平均每周容量损失仅为0.15%。 通过流变相反应法和惰性气氛下的热解反应,成功地向苝环化合物中引入锡锌复合氧化物,得到了一种新型团聚物SnZnO 1 39C1l30该复合物在0.01~1.5 V之间充放电时,首次放电比容量为1555.6 mAh/g,充电比容量为586.5 mAh/g,首次循环效率为37.7%,经过30周循环后充电容量保持率为71.0%,平均每周容量损失为0.97%。我们还发现了该复合材料在高电位区有趣的充放电行为:该材料在0.01一4.35V之间充放电时,首次放电和充电比容量分别为1494.5 mAh/g和1762.6 mAh/g。经过10周循环以后,放电和充电比容量分别为1035.1 mA川g和1030.1 mA州g,与在该电压范围内充放电的第二周循环比容量(放电和充电比容量分别为1157 mA可g,1051.611】A吨)相比,容量保持率分别为89.5%和98%。 另外,本论文还采用流变相反应法合成了含钻复合草酸盐前驱物,并通过热解得到了一系列含钻复合氧化物,其中尖晶石结构的ZnCoZO;复合氧化物平均粒径约为100l1m,其主要充电电压平台在2.OV以下,放电电压平台在1 .2V左右,在经过50周循环充放电后,其贮锉容量仍保持为460.82 mA州g,平均每周的容量损失仅为0.5%。相对于用类似方法合成的纳米Co3O4负极材料,充放电电压有所降低,同时也获得了良好的循环性能。

【Abstract】 Since lithium-storage materials were adopted as negative electrode materials for lithium-ion batteries instead of lithium metal in lithium batteries, the hidden insecurity and poor cyclic performance caused by the formation of lithium crystalline have been improved, and the high-voltage merit of lithium batteries was remained as well. At the same time, the lithium-ion batteries possess other advantages such as high energy density, little weight, small volume, long cycle-life, little effect of memory and better environment benefits etc., so the lithium ion batteries meet the development requirements of modern information technology such as high capacity and small volume vehicles, and have mushroomed the most rapidly during the past few years.In the development of lithium ion batteries, each great breakthrough originates from the applying of new materials and ideas. Carbon materials (graphite, soft carbon, hard carbon and some amorphous carbon obtained from pitches) are used as anode materials for lithium ion batteries in modern battery technology. However, carbon materials suffer from poor capacity (the theoretical capacity of graphite is only 372 mAh/g) and insecurity. So many efforts have been devoted to the improvement of carbon negative electrode materials and searching for alternative materials. Tin and cobalt -based materials have attracted much interest for the high specific energy capacity, wide raw material sources and good safety.Essential parts of this thesis include the synthesis of novel carbon/tin composites through the pyrolysis of various aromatic carbonates and the studies of these composites as lithium- intercalation electrode materials in lithium-ion batteries. The main results and conclusion are summarized as follows:Novel carbon/tin oxides composites were obtained through the pyrolysis of stannous phthalate precursors. Materials attained in the inert atmosphere exhibit low irreversible capacity in the first discharge but poor cycleability comparing with composites synthesized in the atmosphere. When they work in the voltage range of 0.01 ~ 1.5 V, the initial cycle efficiency of the former composites is 33.12 %, and the charge capacity remains 60.7 % after 10 cycles. The initial cycle efficiency of the latter materials is only 30.87 %, and charge capacity remains 76.5 % after 10 cycles.Novel carbon/tin composites were obtained through the pyrolysis of stannous 1,8-naphthalenedicarboxylate precursors. The composites were tested as anode materials forlithium ion battery in 0.01 -1.0 V, 0.01 ~ 1.5 V, 0.01 ~ 2.0 V voltage ranges, and the charge capacity remains 17 %, 34.8 % and 28.8 % after 20 cycles, respectively. The composites cycled between 0.01 ~ 1.5 V exhibit good cycleability.New carbon prisms were obtained through the pyrolysis of a certain perylene tetracarboxylic acid derivatives. The charge and discharge capacity of this carbon material is 272.1 mAh/g and 506.4 mAh/g in the first cycle, and the initial cycle efficiency is 53.7 %. The charge capacity remains 95.6 % after 30 cycles, and the capacity loss is only 0.15 % per cycle.We have succeeded in embedding the zinc/tin composite oxides into perylene compounds, and yielded the agglutinated SnZnOCn.s composites. The composites were tested as anode materials for lithium-ion batteries in the potential range of 0.01 ~ 1.5 V, the charge and discharge capacity is 586.5 mAh/g and 1555.6 mAh/g for the initial cycle, and the cycle efficiency is only 37.7 %. After 30 cycles, the charge capacity remains 71.0 %, and the capacity loss is 0.97 % per cycle. But amusingly, we found some interesting phenomena when the composites worked between 0.01 ~ 4.35 V. The discharge and charge capacity of initial cycle are 1494.5 mAh/g and 1762.6 mAh/g, which are 1157.0 mAh/g and 1051.6 mAh/g for the second cycle, and drop to 1035.1 mAh/g and 1030.1 mAh/g after 10 cycles respectively. Comparing with the second cycle, the insertion and extraction capacity remains 89.5 % and 98.0 %, respectively.In the thesis, a series of cobalt-contained composite oxid

  • 【网络出版投稿人】 武汉大学
  • 【网络出版年期】2004年 04期
  • 【分类号】TM912
  • 【下载频次】336
节点文献中: 

本文链接的文献网络图示:

本文的引文网络