节点文献

基于相应面近似的反舰导弹并行子空间优化设计技术

A Based Response Surface Method Concurrent Subspace Optimization of Antiship Missile

【作者】 曾声宇

【导师】 谷良贤;

【作者基本信息】 西北工业大学 , 飞行器设计, 2004, 硕士

【摘要】 多学科设计优化是一种新兴的设计优化方法,主要用于解决大规模复杂工程系统的设计问题。由于其优越的计算性能,在国外航空航天设计领域已经占据相当重要的地位。并行子空间优化方法就是一种多学科优化方法,它适用于多学科分析环境,尤其适用于大型分布式分析问题。当应用于多学科设计环境时,并行子空间优化方法相对传统优化方法有几大优点:减少了学科间信息传递的数量;免去了大的迭代循环;允许在不同学科分析模块中应用不同子空间优化器;可以在不同设备上并行运行;结构框架适用于传统学科组织形式;允许各学科专家最大限度地参与学科分析和设计。本文对并行子空间优化方法进行了深入地讨论,并且对其在反舰导弹设计优化中的应用进行了有益的尝试。 本文的主要工作包括: 1.阐述了并行子空间优化方法的发展,深入探讨基于响应面的并行子空间优化方法,给出其框架及数学表达,利用数学算例验证方法的可行性。 2.建立气动、弹道及发动机模块化分析模型,并在其基础上初步选定反舰导弹的设计参数。 3.建立反舰导弹并行子空间优化设计框架,结合各学科分析模型,实现反舰导弹的优化设计计算。

【Abstract】 Multidisciplinary Design Optimization (MDO) is a design architecture developed since the last two decades, which is mainly focused on solving the design problems of large-scale complicated engineering systems. Because of its excellent computation characteristics, MDO has played an important role in the field of aeronautic & astronautic engineering design. Concurrent Subspace Optimization (CSSO), as a typical MDO method, is well suited to multidisciplinary design environment, especially large-scale distributed analysis problem. When used in multidisciplinary environment, CSSO has several advantages over standard optimization method: reduction of the information transfer; elimination of large iteration loop; allowance of the use of corresponding subspace optimizers in different disciplinary analysis; a parallel optimization architecture which is readily operable on a suite of heterogeneous equipments; more natural fit to the current organization structure found in most institutes of aerospace and aeronautic design; participation of the disciplinary experts to best deal with specific disciplinary models. This paper is mainly focused on CSSO method. And its application to the design optimization of antiship missile is realized satisfactorily.The major work in this paper includes:a) The development and mathematical framework of a based on Response Surface Method (RSM) CSSO are introduced and its feasibility is argued by two problems.b) Analysis models of aerodynamics, trajectory and propulsion system are established. Based on these models, the initial values for the design variables are chosen.c) The concurrent subspace optimization framework for antiship missile is set up. Based on this framework together with those disciplinary analysis models, the concurrent subspace optimization of antiship missile is finally realized.

  • 【分类号】TJ761
  • 【被引频次】11
  • 【下载频次】368
节点文献中: 

本文链接的文献网络图示:

本文的引文网络