节点文献
Kac-Moody代数的实根向量和虚根向量及Schubert-子模的一些性质
【作者】 罗柳红;
【导师】 卢才辉;
【作者基本信息】 首都师范大学 , 基础数学, 2002, 硕士
      
      【摘要】 本文分为两个相对独立的篇章:    第一部分主要讨论了Kac-Moody代数中的一类基本问题,即给定一个实根或虚根,其对应的实根向量和虚根向量该如何表示?我们要求给定的广义Cartan矩阵满足条件或,对;对应的李代数记为g(A)。我们得到结果如下:[定理1]设广义Cartan矩阵满足以下条件:    (ⅰ)1≤i≠j≤n时,ai,j=0或ai,j<-2;    (ⅱ)Kac-moody代数g(A)的Weyl群W中元素wj的简约表示为:    (ⅲ)任何两个相邻的因子rik和rik-1不可交换。记实根其相应的实根向量为:则有:[定理2]条件及符号如同定理1中所述,设tj-1满足条件        贝:                          /1\一</jj一1,O;>+ti_1(Qi。j。。十工),。\一<U。_,、口y>一t。1t,_              在第二部分,我们主要关注Schubert-子模的维数问题。M.E.Hall        在他的博士论文中,已经讨论过Schubert-伸和可积最高权模之间所        具有的紧密联系,包括可积最高权模可表成Schubert-子模的并;且尽        管可积最高权模的维数本身是无限的,但Schubert-子模的维数总是有        限的;等等。本文中,我们试图对SChllbeyt-子模的维数作些探讨。            本部分组织如下:            第一节是引言,主要给出Schubert-子模的定义以及M.E.Hall在他        的论文中已经得到的结果。            第二节是概念和背景知识,主要是给出一些本文用到的概念及符        号,以及一些本文用到的与W的性质相关的引理;并着重介绍引理2.2,        弓理2.3,弓理2.4。            第三节是一些既有的结果。从这一节起。我们只讨论对应于广义                                  /2-n\        Cartan矩阵A=DIn>2的一类特殊的二阶双曲型李代数。                                  \2-n j      特别介绍引理s2中关于g卜)的实根集的描述。            在第四节中,令咤表示某些根空间的和。然后我们证明咤是交                                                                        2      换李代数,并且  Schubert-子模儿=U(n£).vw(。)。            第五节我们先证明了g卜)的实根和虚根的几个性质,然后对        Schubert-子模的维数表示给出猜想,这一猜想的证明在目前的证明        中尚有困难。
【Abstract】 There are two parts in this article.Part I is mainly discussing an elementary problem in Kac-Moody Algebra:how to describe the real and imaginary root vectors corresponding to a given real or imaginary root? We reqire the generalized Cartan matrice satisfy the following condition that a- is zero or less than -2 for all 1 i,j<n . Then we get some results as folows:[Theorem 1] Let a G.C.M A = (a) satisfies the following conditions:(i) is zero or less than -2 for all 1 W is reduced and it’s reduced expression is:(iii)for all k{2,3,...}, r and r are not exchangeable. Let denote the real roots: Let X. denote the corresponding real root vectors: Then:[Theorem 2] The conditions same as [Theorem 1]. Suppose that tj-1satisfies:Then,In Part II,we are specifically interested at dimensions of Schubert submodules. We got to know the close relationships between an integrable highest-weight module and Schubert submodules in the paper by M.E.Hall. He demenstrates some properties of Schubert submodules including the fact that an integrable highest-weight module V is a union of it’s Schubert submodules and the dimensions of Schubert submodules are finite although the integrable highest-weight module itself is infinite-dimensional. It’s the purpose to find an expression to dimensions of Schubert submodules in this part.This part is oganized as follows:Chapter 1 is an introduction. We present the definition of Schubert submodules and what M.E.Hall has done.Chapter 2 is preliminaries. We cite some relevant lemmas to introduce the properties of w,which is an element in Weyl group of a Lie algebra.Chapter 3 is some results associated with a special kind of Lie al-gebras. These Lie algebras are hyperbolic corresponding to a generalizedCartan matrice A =n>2. We specially introduce lemma3.3,an expression of the real set of g(A).Then in chapter 4,we denote n as the sum of some root spaces ga. And we prove that n is a commutative Lie algebra and a Schubert submodule Vw can be expressed by Vw = U(n,}.vw.At last in chapter 5,we give proofs to some properties of real and imaginary roots of g(A) and a guess to express the dimensions of Schubert submodules,whose proof is encountering some difficulty at present.
- 【网络出版投稿人】 首都师范大学 【网络出版年期】2003年 01期
- 【分类号】O153.3
- 【下载频次】26