节点文献

声场与结构耦合系统的模态分析与灵敏度计算

【作者】 高剑

【导师】 顾元宪; 赵国忠;

【作者基本信息】 大连理工大学 , 工程力学, 2002, 硕士

【摘要】 随着对车、船、飞机乘坐舒适性要求的不断提高,其乘坐室(舱)内的噪声问题越来越引起人们的高度重视。乘坐室(舱)是一个相当复杂的声学系统,不仅结构复杂而且形状不规则,加之结构壁面都不同程度地贴有吸声材料而产生对声波的吸收,使得用传统理论方法对室(舱)内噪声声压级进行预估非常困难。有限元等数值方法是分析几何形状和边界条件复杂的振动问题和声学问题的得力工具之一,将其用于声固耦合分析,可实现设计阶段乘坐室(舱)内噪声响应进行理论分析与预测。而乘坐室(舱)为典型的弹性薄壁腔体结构,其内部噪声与壁结构振动之间存在着强烈的耦合关系。因而,对乘坐室(舱)声振耦合特性的分析研究即成为噪声控制与低噪声设计的前提和关键。 声振耦合系统的灵敏度分析可以方便、快速地对乘坐室(舱)结构进行动态修改而达到降低噪声的目的。而在结构的内壁面敷贴吸声材料是车辆等普遍采用的噪声控制方法之一,因此分析吸声材料对室内噪声响应的灵敏度更具有实用价值。 本文的工作是结合大型结构分析和优化软件JIFEX的方法和功能,发展声场—结构耦合系统的有限元分析及优化设计方法。本文的研究涉及到空腔声学分析理论、声振耦合有限元模型的模态频率响应分析方法以及优化设计中的灵敏度分析、阻尼减振等。主要工作如下: 1.空腔声学的有限元分析及优化设计。用有限元法求解波动方程。利用8节点块体单元,在刚性壁条件下,对声场的基本方程进行数值求解,在JIFEX系统中发展了这种新的有限元模型,计算了封闭空腔的声学模态(固有频率和振型)。本文采用基于局部差分的半解析算法,进行特征值的灵敏度分析,并将计算结果提供给结构力学分析模块,实现了空腔声学的有限元分析和灵敏度计算。最后,建立了优化设计模型,进行声场动力优化设计。 2.声振耦合系统的有限元分析方法。由声空间波动方程和薄板理论出发,对声场—结构耦合系统的模态分析提出了有限元数值方法,采用共扼子空间迭代法对非对称特征方程进行处理,采用静凝聚法消除质量矩阵的奇异性。然后,将结构力学分析模块与共扼子空间迭代法模块相结合,求解经过降阶后的模态方程,并为灵敏度分析提供了必要的基础。 3.有阻尼声振耦合系统的有限元分析及灵敏度计算。讨论了阻尼降噪问题,建立了有阻尼声振耦合系统的有限元模型,采用振型叠加法,将系统位移转换到以固有振型为基向量,进行结构壁面有吸声材料的声振耦合系统响应的有限元分析与灵敏度分析,推导了比例阻尼条件的灵敏度计算公式。 本文的研究工作是国家自然科学基金资助项目(10032030)和国家重点基础专项经费(G1999032805)资助计划的一部分

【Abstract】 The acoustic design for a passenger compartment of the vehicle, ship, and plane is very important to improve the carborne acoustic comfort and to enhance the competitiveness for the products in market.The research work in this dissertation involves the theories of interior noise analysis for the cavity, the sensitivity analysis of dynamic optimization, and the modal analysis of acoustic-structural coupled system with proportional damping. Main contents of dissertation are as follows:(1) The finite element method is demonstrated to apply for the solution of the wave equation. If rigid walls are assumed in the finite element model for the boundary panels, an eight node, isoparametric acoustic finite element model is developed for calculating the acoustic modes of cavities. Initially a rectangular enclosure is analyzed in order to study the convergence of the results. The element is then used to analyse an irregular shaped cavity. A semi-analytic method, in which the derivatives of stiffness matrix and mass matrix are obtained by the difference technique, for sensitivity analysis in dynamic shape optimization is presented in this dissertation.(2) Based on the wave equation in the acoustic fluid space and the theory of thin-wall structure, the non-symmetrical coupled structure-acoustic dynamic equation without damping is studied. The non-symmetric system of the finite element model for coupled structure-acoustic response is solved by the conjugate subspace iteration method. The numerical methods have been implemented in a finite element software system - JIFEX.(3) Introducing the proportional damping, the finite element formula of structural-acoustic coupled system lined with sound absorbing materials is obtained. Mode-superposition technique for modal frequency response analysis of coupled structure-acoustic systems is also used to deal with the sensitivities of the eigenvalues and eigenvectors of coupled systems for the purpose of reducing cavity interior noise in theory.The research of this dissertation is part of the projects supported by the National Natural Science Foundation of China (No. 10032030) and the Special Funds for National Key Basic Research of China (No.G1999032805).

  • 【分类号】TU112
  • 【被引频次】8
  • 【下载频次】818
节点文献中: 

本文链接的文献网络图示:

本文的引文网络