节点文献

多孔钛制备方法及结构性能影响因素研究

Preparation Methods and Influencing Factors of Structural Properties of Porous Titanium

【作者】 张力

【导师】 段可;

【作者基本信息】 西南交通大学 , 材料科学与工程, 2013, 硕士

【摘要】 本文使用占位填料法和凝胶铸造法制备多孔钛,通过调整孔隙率使多孔钛力学性能与骨组织力学性能匹配,以减轻钛植入体材料与骨组织的应力屏蔽。使用占位填料法制备多孔钛,选取两种钛粉(10~40μm、5~20μm),造孔剂为碳酸氢铵(100~400μm),在10-3Pa真空中进行烧结。考查烧结温度、保温时间、升温时间、钛粉含量对多孔钛微结构(孔隙率、开孔率)与力学性能(最大抗压强度、杨氏模量)的影响。烧结温度选为1000℃、1100℃、1200℃、1300℃;保温时间选为1h、1.5h、2h、3h;升温时间选为4.5h、5h、5.5h、6h;钛粉含量选为45%、50%、55%、60%、65%。结果表明:在烧结温度1200℃、保温时间2h、升温时间4.5h、钛粉含量50%、钛粉粒径范围10-40μm的条件下,多孔钛的微结构和力学性能最佳,孔隙率为63.5%,开孔率为64.9%,最大抗压强度为150.7MPa,弹性模量为2.91GPa,宏孔与微孔的孔径范围分别为100-400μm与10~40μm。烧结温度、保温时间对多孔钛的微结构和力学性能影响较大,烧结温度为主要因素,保温时间为次要因素,升温时间影响较小。钛粉含量对多孔钛的微结构和力学性能影响明显。在此基础上,加入氢化钛(100-400μm),以研究氢化钛对多孔钛微结构和力学性能的影响,氢化钛加入量选为5%,7.5%,10%,12.5%,15%,20%。结果表明:氢化钛加入量为10%(钛粉与氢化钛质量比为4:1)时,多孔钛的微结构和力学性能最佳,孔隙率为69.5%,开孔率为70.2%,最大抗压强度为180.6MPa,弹性模量为3.12GPa,宏孔与微孔的孔径范围分别为100~500μm与10~50μm。氢化钛加入量小于10%,有助于提高多孔钛的微结构、力学性能与孔径范围。使用凝胶铸造法制备多孔钛,无水氯化锂为4g、甲壳素为0.56g、N-N,二甲基乙酰胺为100m1时,制备的浆料最佳,此时制备的多孔钛,孔隙率为56.4%,开孔率为69.7%,最大抗压强度为204.5MPa,弹性模量为3.16GPa,宏孔与微孔的孔径范围分别为100~200μm与10-20gm。凝胶铸造法和占位填料法相比,前者制备的多孔钛,强度和模量较大,但孔隙率和宏孔尺寸较小;后者制备的多孔钛,孔隙率和宏孔尺寸较大,但强度和模量较小。因此,可根据实验需求选取具体的实验方法。

【Abstract】 In this paper, the place holder packing method and gel casting method are prepared to porous titanium, by adjusting porosities of the porous titanium, mechanical properties of bone tissue match the performance of titanium implant materials and bone tissue to relieve stress shielding.The place holder packing method is prepared to porous titanium with titanium (Ti,10~40μm,5~20μm) by vacuum sintering of Ti powders (10~40μm) using ammonium bicarbonate (100~400μm) as the porogen. And to examine sintering temperature, holding time, heating time, the titanium powder content of the porous titanium micro-structure (porosity, opening porosity) and mechanical properties (maximum compressive strength, Young’s modulus) of impact. Sintering temperature selected as1000℃,1100℃,1200℃,1300℃. Holding time selected as1h,1.5h,2h,3h; Heating time selected as4.5h,5h,5.5h,6h; the content of titanium powder selected as45%,50%,55%,60%,65%. The optimum processing conditions were:heating time4.5h and sintering at1200℃for2h. The porous Ti prepared under these optimum conditions had a total porosities of63.5%, open porosities of64.9%, compressive strengths of150.7MPa, and Young’s modulus of2.91GPa. Macro-porous and micro-porous pore size range of100~400μm with10~40μm. Sintering temperature, holding time on the microstructure and mechanical properties of porous titanium greater impact, and sintering temperature is the main factors and holding time is the secondary factors, the heating time is less affected. How much of the content of titanium powder also has a significant effect on the microstructure and mechanical properties of porous titanium.Above all, Titanium hydride (100~400μm) to the study of titanium hydride and the impact on the microstructure and mechanical properties of porous titanium, titanium hydride addition amount of preferably5%,7.5%,10%,12.5%,15%,20%. Results showed that: when the titanium hydride10%(titanium powder and titanium hydride mass ratio of4:1), the the porous titanium microstructure and mechanical properties, porosity of69.5%, opening porosity of70.2%, maximum compressive strength of180.6MPa, elastic modulus3.12GPa, macro-porous and micro-porous pore size range of100~500μm with10~50μm. Adding a small amount of titanium hydride content of less than10%, help to improve the micro-structure of the porous titanium, mechanical properties and pore size range.Gel casting preparation of porous titanium, when anhydrous lithium chloride for4g, chitin0.56g, N-N dimethyl acetamide100ml slurry was prepared, the porous titanium is prepared, porosities of56.4%, opening porosities of69.7%, maximum compressive strength of204.5MPa, elastic modulus3.16GPa, macro-porous and micro-porous pore size range were100~200μm and10~20μm.Gel casting method, and the place holder packing method, the former is able to provide greater strength and modulus, but are too small compared to the number of pores and macro-pore size of the latter; the latter is able to get higher porosities and macro-pore size of but strength and modulus compared to the former are small. Thus, according to the specific experimental need to select the specific test method.

节点文献中: 

本文链接的文献网络图示:

本文的引文网络