节点文献

硬脂酸及其复合薄膜光波导元件的气敏性研究

Gas Sensitive Study on Stearic Acid and Its Composite Thin Film Optical Waveguide Sensing Element

【作者】 艾拜拉·热合曼

【导师】 阿布力孜·伊米提;

【作者基本信息】 新疆大学 , 分析化学, 2012, 硕士

【摘要】 随着近代化工和其它工业的快速进步,易燃、易爆和对人类有毒有害的气体种类、数量都日益增多。如果它们泄漏到空气中,就会污染环境、影响生态平衡,甚至发生爆炸、火灾、中毒等灾害性事故。因此迫切需要研究并开发在环境中对各种有害有毒气体的检测方法。光波导化学传感器具有灵敏度高、响应快、可在常温下易操作等特点,不仅被广泛应用于工业生产、化学和生物监测领域,特别是在检测有害气体方面占据了越来越重要的地位。作为光波导化学传感器的敏感部分,敏感材料直接影响到传感器的敏感性能,通过筛选适当的敏感材料,使光波导化学传感器的敏感特性能达到最佳的目的。本论文将有机敏感材料和聚合物材料的独特性能与光波导化学传感器的优越特点结合在一起,以掺杂型硬脂酸复合物作为敏感材料,利用光波导传感元件检测系统对挥发性有机蒸汽和酸性气体进行了气敏性研究。本论文由以下几个部分组成:第一章为绪论部分。讲述了光化学传感器及其分类。着重介绍了光波导化学传感器的特点、发展现状、传感原理(倏逝波传感原理)、分类和应用,敏感材料的种类和在气体检测中的应用,以及玻璃光波导(K+交换玻璃光波导)的制作技术等方面的内容。最后提出了课题来源及论文研究工作的主要内容。第二章为聚乙烯吡咯烷酮-硬脂酸复合薄膜/K+交换玻璃光波导元件对挥发性有机蒸汽的气敏性研究。以掺有聚乙烯吡咯烷酮(PVP)的硬脂酸复合溶液作为敏感试剂,采用旋转甩涂法在K+交换玻璃光波导表面上制备PVP-硬脂酸复合薄膜,研制出PVP-硬脂酸复合薄膜/K+交换玻璃光波导元件,并检测了挥发性有机蒸汽,以挥发性有机蒸汽的摩尔折射率来解释了选择性机理。实验结果表明,该元件对二甲苯和苯乙烯蒸汽具有较好的气敏性能,并且响应速度快、可逆性好,在常温下该传感元件能够检测出体积分数为1×10-6的二甲苯(4.41mg/m3)和苯乙烯(4.43mg/m3)蒸汽。第三章为偶氮苯-硬脂酸复合薄膜/K+交换玻璃光波导元件对挥发性有机蒸汽的气敏性研究。以偶氮苯掺杂的硬脂酸复合薄膜作为敏感试剂,筛选出最佳转速,并改变偶氮苯的掺杂量分别研制出了掺杂量不同的五种偶氮苯-硬脂酸复合薄膜/K+交换玻璃光波导元件。其中,掺杂量为0.032%的偶氮苯-硬脂酸复合薄膜/K+交换玻璃光波导元件对苯乙烯蒸汽的灵敏度和选择性最好并具有良好的可逆响应。研究结果表明,该元件能够检测到1×10-8(0.043mg/m3)的苯乙烯蒸汽和1×10-7(0.44mg/m3)的二甲苯蒸汽。第四章为亚甲基蓝-硬脂酸复合薄膜/K+交换玻璃光波导元件及其气敏性研究。本章将亚甲基蓝(MB)作为掺杂剂,制备不同掺杂量的MB-硬脂酸复合薄膜/K+交换玻璃光波导元件,经过大量实验确定最佳的掺杂量。用旋转甩涂法制备最佳掺杂量的MB-硬脂酸复合薄膜/K+交换玻璃光波导元件,分别对苯乙烯、氯苯、甲苯、HCl、NO2进行检测,并且敏感机理进行探讨。实验结果表明,该传感元件对苯乙烯、氯苯、甲苯、HCl、NO2有一定的选择性,响应最低体积浓度分别为1×10-7(0.43mg/m3)、1×10-6(4.65mg/m3)、1×10-5(38.2mg/m3)、1×10-8(0.015mg/m3)、1×10-6(1.91mg/m3)。第五章为甲酚红-硬脂酸复合薄膜/K+交换玻璃光波导元件及其气敏性研究。以掺杂含量不同的甲酚红(CR)-硬脂酸复合薄膜作为敏感试剂,用旋转甩涂法固定在K+交换玻璃光波导表面上,制备出了CR-硬脂酸复合薄膜/K+交换玻璃光波导传感元件。本章筛选出了掺杂量为0.063%的CR-硬脂酸复合薄膜/K+交换玻璃光波导元件,并检测出挥发性有机蒸汽和酸性气体,且敏感机理进行了讨论。研究结果表明,该元件对H2S气体具有极高的灵敏度(能够检测出低于1×10-10(0.14μg/m3)的H2S气体)、响应速度快、重复性好。该元件还对二甲苯蒸汽具有较好的响应,能够检测到体积分数为1×10-6(4.41mg/m3)的二甲苯蒸汽。第六章为结论部分,总结本研究工作的主要内容。

【Abstract】 With the rapid progress of modern chemical industry and other industrial sectors,Types and numbers of gases with flammable, explosive and hazardous for humans areincreasing daily. If they leak into the air, it will pollute the environment and affect theecological balance, or even explosions, fires, poisoning and other severe accidents.Therefore, there is an urgent need for research and development of detection methodson a variety of hazardous and toxic gases in the environment. Optical waveguide(OWG) chemical sensor has high sensitivity, fast response, easy to operate at roomtemperature and so on, it was not only widely applied in the industrial production, thefield of chemical and biological monitoring, in particular, but also occupied anincreasingly important role in the detection of harmful gases.As a sensitive part of the optical waveguide chemical sensor, the sensitivematerial directly affect sensing properties of the sensor, through the selection ofappropriate sensitive material, making the sensitive characteristics of the opticalwaveguide chemical sensors at best. In this paper, combining with unique propertiesof the organic sensitive materials and polymer materials and the superior features ofoptical waveguide chemical sensors, doped with stearic acid complexes as a sensitivematerials, and the gas sensing response of these sensitive materials to volatile organicvapors and acid gases was studied by use of optical waveguide detection system. Thepresent paper is composed by following several parts:The first chapter is part of introduction. In this part, the optical chemical sensorsand its classification were simply described. The characteristics and the developmentstatus of optical waveguide chemical sensors, the OWG’s sensing principle(evanescent wave sensing principle), its classification and application, Types ofsensitive materials and application in gas detection, and glass OWG (K+-ionexchanged glass OWG) fabrication techniques were mainly introduced. At last, thetopic sources and contents of this study work were put forward. The second chapter is about the gas sensitivity study of PVP-stearic acidcomposite film/K+-ion exchanged glass optical waveguide sensor for volatile organicvapors. Stearic acid complex solution mixed with polyvinyl pyrrolidone (PVP) as asensitive reagent, PVP-stearic acid composite films on the surface of K+-ionexchanged glass optical waveguide were prepared by spin coated method, developedPVP-stearic acid composite film/K+-ion exchanged glass optical waveguide sensor,and carried on the detection of volatile organic vapors, the selective sensingmechanism was briefly explained by changes of organic vapor molar refractive index.The results showed that the sensor has high sensitivity towards xylene and styrenevapors, and fast response, good reversibility, it can detect1×10-6(volume fraction) ofxylene (4.41mg/m3) and styrene (4.33mg/m3)vapors at room temperature.The third chapter is about the research of gas sensing properties of theazobenzene-stearic acid composite film/K+-ion exchanged glass optical waveguidesensor for volatile organic vapors. Azobenzene doping stearic acid composite films assensitive reagents, by filtering out the best rotational speed, and changing the dopingquantity of azobenzene, developed the five different doping amounts of azobenzene-stearic acid composite films/K+-exchanged glass optical waveguide sensors,respectively. Among them, doped with0.032%azobenzene-stearic acid compositefilm/K+-exchanged glass optical waveguide sensor had high sensitivity and bestselectivity, and good reversible response to styrene vapor. The research resultsindicated that the sensor was able to detect1×10-8(0.043mg/m3) of styrene vaporand1×10-7(0.44mg/m3) of xylene vapor.The fourth chapter is methylene blue-stearic acid composite film/K+-exchangedglass optical waveguide sensor and its gas sensitivity. In this chapter, methylene blue(MB) was selected as dopant, doped with different amount of MB-stearic acidcomposite films/K+-exchanged glass optical waveguide sensors were fabricated byspin coated method, the optimal amount of doping is determined through a large number of experiments, detection for styrene, chlorobenzene, toluene, HCl, and NO2was carried out seperately, and sensitive mechanism was also discussed. Theexperimental results showed that the sensor has the good selectivity to styrene,chlorobenzene, toluene, HCl and NO2gases, minimum volume concentrationresponse into1×10-7(0.43mg/m3),1×10-6(4.65mg/m3),1×10-5(38.2mg/m3),1×10-8(0.015mg/m3),1×10-6(1.91mg/m3), respectively.The fifth chapter is cresol red-stearic acid composite film/K+-exchanged glassoptical waveguide sensor and its gas sensitive study. Doped with different content ofcresol red (CR)-stearic acid composite films as a sensitive reagents, immobilized onthe surface of K+-ion exchanged glass optical waveguide, CR-stearic acid compositefilm/K+-exchanged glass optical waveguide sensors were fabricated by spin coatedmethod. In this chapter, doped with0.063%CR-stearic acid composite film/K+-exchanged glass optical waveguide sensor was selected by enormous experimentation,and volatile organic vapor and acid gases were detected, the sensing mechanism ofsensor was discussed. The results showed that the sensor had high sensitivity (it candetect lower than1×10-10(0.14μg/m3) of H2S gas), fast response, good repeatability.The sensor also had response to xylene vapor, it was able to detect the volumefraction of1×10-6(4.41mg/m3) xylene vapor.The sixth chapter is the concluding part, a summary of the main content of ourresearch study.

  • 【网络出版投稿人】 新疆大学
  • 【网络出版年期】2012年 12期
节点文献中: 

本文链接的文献网络图示:

本文的引文网络