节点文献

毛竹对O3、CO2浓度升高及其复合作用的生理响应

Physiological Responses of Phyllostachys edulis to the Elevated O3and CO2Alone and in Combination Concentration

【作者】 庄明浩

【导师】 陈双林;

【作者基本信息】 中国林业科学研究院 , 生态学, 2012, 硕士

【摘要】 毛竹(Phyllostachys edulis)是中国最为重要的经济竹种,具有分布广、面积大、应用领域广、利用价值高、生长快、产量高、效益好等特点,在中国竹产业发展和区域生态环境保护中起到极为重要的作用。为揭示毛竹对大气主要温室气体浓度升高的生理响应规律,给气候变化背景下的毛竹林适应性管理提供理论依据,开展了O3和CO2浓度升高及其复合作用对毛竹生理生态的影响研究。主要研究结果如下:(1)毛竹对大气O3浓度升高的生理响应随着O3浓度的升高,毛竹叶片Chl和Car含量、SOD活性均呈下降趋势,可溶性蛋白、MDA和O2-含量、POD活性均呈升高趋势。与过滤大气相比,100nl·L-1和150nl·L-1O3浓度处理的毛竹叶片光合色素含量、SOD活性极显著降低,叶片可溶性蛋白、MDA、O2-含量和POD活性极显著升高;低浓度O3(≤50nl·L-1)并未对毛竹造成明显的生理伤害,而长时间高浓度O3(≥100nl·L-1)胁迫,会导致毛竹叶片光合色素降解或合成受阻,叶片老化加快,膜脂过氧化程度加剧,膜结构和抗氧化系统功能遭到破坏,影响毛竹的正常生长。(2)毛竹和四季竹耐受臭氧胁迫能力的差异运用主成分分析法对毛竹和四季竹叶片叶绿素、类胡萝卜素、MDA、可溶性蛋白含量和SOD、POD活性等生理指标进行了耐受O3胁迫能力的差异性比较分析,表明叶片Chl和MDA含量是反映毛竹、四季竹对O3胁迫耐受力的重要指标。虽然高浓度O3胁迫对毛竹和四季竹的生长均有着负面影响,但毛竹对O3胁迫的耐受能力明显弱于四季竹。(3)大气CO2浓度升高对毛竹叶片膜脂过氧化和抗氧化酶的影响与环境大气比较,500μmol·mol-1CO2浓度处理30d时对毛竹叶片光合色素、膜脂过氧化和抗氧化系统影响并不明显,仅叶片CAT活性显著降低。随着处理时间的延长,对毛竹叶片膜脂过氧化和抗氧化系统的影响逐渐显现,至处理90d时,除叶片可溶性糖含量无明显变化,叶绿素、MDA和可溶性蛋白含量,SOD、POD、CAT和APX活性均有显著变化;700μmol·mol-1CO2浓度处理在各个处理时间点(30、60、90d)上对毛竹叶片膜脂过氧化和抗氧化系统的影响均较500μmol·mol-1CO2浓度处理明显。处理30d时毛竹叶片可溶性糖含量和抗氧化酶活性就有明显变化,处理90d时,叶绿素、MDA、可溶性糖和可溶性蛋白含量,SOD、POD、CAT和APX活性均有显著变化;研究表明大气CO2浓度升高一定程度上能增强毛竹的抗氧化能力,但光合产物的过量积累也会造成碳水化合物源-库失衡和Rubisco的再生受到反馈作用抑制。(4)大气CO2浓度升高对毛竹叶片主要养分元素化学计量特征的影响不同的CO2浓度条件下,毛竹叶片C、N、P和K含量变化范围分别为512.13543.30、19.2322.97、1.260.96和8.405.88mg g-1,叶片C:N、C:P、C:K、N:P、N:K和K:P变化范围分别为26.6423.65、406.58565.93、60.9892.40、15.2623.93、2.293.91和7.006.22。与环境背景大气比较,CO2浓度升高到500μmol mol-1,对毛竹叶片主要养分元素的化学计量特征并不会产生明显影响,反映了毛竹对高浓度CO2环境的较强适应能力。但CO2浓度升高到700μmol mol-1,毛竹叶片主要养分元素化学计量特征会发生明显的适应性变化;CO2浓度升高对毛竹生长的NK限制性作用没有明显影响,但明显增强了毛竹生长的P素限制性作用。(5)大气CO2浓度升高对毛竹立竹器官矿质离子吸收、运输和分配的影响除CO2浓度700μmol mol-1对Ca2+浓度在毛竹立竹器官中大小排序会产生影响外,CO2浓度升高对Na、Fe(2+,3+)、Mg2+、Ca2+浓度立竹器官中大小排序并没有明显影响。CO2浓度升高对竹叶Fe(2+,3+)和竹枝Fe(2+,3+)、Mg2+浓度无明显影响,但对立竹器官的其它矿质离子浓度会有不同程度的影响,竹叶Ca2+和Mg2+、竹枝Na和Ca2+、竹秆Na和Ca2+及Mg2+、竹根Na和Mg2+浓度明显提高,竹叶Na、竹秆Fe(2+,3+)、竹根Fe(2+,3+)和Ca2+浓度明显降低;随着CO2浓度的升高,竹叶Fe(2+,3+)/Na+、Mg2+/Na+和Ca2+/Na+,竹枝Ca2+/Mg2+及各器官Mg2+/Fe(2+,3+)、Ca2+/Fe(2+,3+)均逐渐增大,而竹枝、竹秆、竹根Fe(2+,3+)/Na+、Mg2+/Na+、Ca2+/Na+和竹叶、竹秆、竹根Ca2+/Mg2+均逐渐减小;CO2浓度升高后除竹根-竹秆SCa,Na、竹秆-竹枝SMg, Fe和竹枝-竹叶SCa,Mg明显下降外,其余的立竹器官矿质离子向上运输系数变化平缓或有明显提高;研究表明CO2浓度升高增强了毛竹立竹根部积累Na能力和Fe(2+,3+)、Ca2+和Mg2+的向上选择性运输能力,提高了光合器官竹叶中矿质养分元素浓度,维持体内矿质养分元素平衡,有利于提高毛竹的光合作用能力和对高浓度CO2环境的适应能力。(6)大气O3和CO2浓度升高复合作用对毛竹生理生态的影响短期(30d)高浓度O3能刺激毛竹叶片抗氧化酶活性和渗透调节物质含量的提高,清除活性氧能力增强,并未出现膜脂过氧化,但长期(90d)O3胁迫,毛竹叶片抗氧化酶活性降低,膜脂过氧化程度加剧,膜结构破坏,发生严重的伤害效应;短期高浓度CO2总体上对毛竹叶片膜脂过氧化和抗氧化系统影响并不明显,而长期高浓度CO2一定程度上能增强毛竹的抗氧化能力和渗透调节功能,减轻氧化损伤;高浓度O3和CO2复合作用下,毛竹叶片能够维持较高的抗氧化酶活性和渗透调节物质含量,有效地调节活性氧产生与清除的平衡,膜脂过氧化程度变化不明显。说明高浓度CO2一定程度上可缓解高浓度O3对毛竹所造成的生理伤害。

【Abstract】 The moso bamboo (Phyllostachys edulis) is the most important economic bamboo speciein China. The bamboo has the characteristic of widely distribution and application large areaof plantion, high value, fast growth, high output and good benefit.The bamboo plays anextremely important role in bamboo industry development and regional ecologicalenvironmental protection in China. In order to demenstrate the physiological response law ofthe moso bamboo interacting with atmospheric CO2concentrationincreasing and provide thetheory basis for climate change under the background of bamboo forest adaptive management,the different concentration of O3and CO2and the compound of physiological function ofecological effects of bamboo was studied. The main research results were as follows:(1) Physiology responses of Phyllostachys edulis to elevate atmospheric ozoneconcentrationAs the ozone concentration increasing, the content of the chlorophyll, carotenoid, andSOD activity decreased; while the content of souble protein, MDA, O2-and the activity ofPOD increased. Through treating with ozone at concentrations of100nl·L-1and150nl·L-1,photosynthetic pigments contents and SOD activity significantly decreased; however, solubleprotein content MDA content, O2-content and POD activity increased, The results suggestedthat the elongated ozone exposure inhibited the growth of Ph.edulis by restricting thesynthesis or speeding the degradation of photosynthetic pigments; accelerating the aging ofleaves; intensifing the damage to membrane lipid, and destroying the structure of cellmembrane and the function of anti-oxidation system.(2) The differences of O3stress tolerance between Phyllostachys edulis andOligostachyum lubricumUsing the principal component analysis method, the physiological indexes of the toleranceof differences O3ability comparison of Ph. edulis and O. lubricum leaves chlorophyll andcarotenoids, MDA and soluble protein, SOD and POD activity, etc. were analysised. The results indicated that leaf Chl and MDA content was important index for the reflection of thePh. edulis and O. lubricum to the O3stress tolerance. Although Ph. edulis and O. lubricumwere subject to the negative impact of high concentration O3stress, the result implied that O.lubricum was much tolerant to O3than Ph. edulis based on major factor analysis.(3) Effects of elevated CO2on lipid peroxidation and anti-oxidation system inPhyllostachys edulisThe physiological indicators exhibited no signicicant differences between CK and500μmol·mol-1treatment except CAT activity which decreased significantly in the initial30d.With elonged CO2treatment, the photosynthetic pigment and membrane lipid peroxidationand anti-oxidation system in leaves of Ph. edulis were gradually impacted. After90d, thephysiological indicators increased or decreased significantly except soluble sugar. The effect of700μmol·mol-1treatment was more significant than500μmol·mol-1treatment on membranelipid peroxidation and anti-oxidation system in leaves of Ph. edulis. Under700μmol·mol-1treatment, the soluble sugar concentration and anti-oxidation enzyme activity changedsignificantly in30d, and all the physiological indicators significantly changed in90d. Weconclued elevated atmospheric CO2concentration could enhance the antioxidant capacity ofPh. edulis to a certain extent, however, the excessive accumulation of photosynthetic productscould also result in carbohydrate source-libraies imbalance and feedback inhibition of Rubiscoregeneration.(4) Effects of Elevated CO2on the Characteristics of Leaf Nutrients in PhyllostachysedulisUnder the different concentrations of CO2, the content of leaf C, N, P, K ranged in512.13543.30,19.2322.97,1.260.96,8.405.88mg/g respectively in Ph.edulis. The leafC:N、C:P、C:K、N:P、N:K、K:P in Ph.edulis ranged from26.64to23.65,406.58to565.93,60.98to92.40,15.26to23.93,2.29to3.91,7.00to6.22and27.39to32.40. Compared withthe background of environmental atmospheric, CO2concentration increased to500μmol·mol-1made no difference on stoichiometric characteristics of the main nutrient elements in Ph.edulis.But elevated CO2concentration increased to700μmol·mol-1had significant difference. Elevated CO2concentration Ph.edulis NK restrictive effect on the growth had no obviouseffect, However, It significantly enhanced the restrictive effect of P concentration to Ph.edulisgrowth.(5) Effects of Elevated CO2on mineral ion uptake, transportation and distribution ofPhyllostachys edulisExcept Ca2+concentration in the Ph.edulis organs size sorting would generate, at the CO2concentration of700μmol mol-1, the elevated CO2concentration.had no significant impact tothe concentrations of Naand Fe(2+,3+)and Mg2+and Ca2+in the different Ph.edulis organs sizesorting. With the CO2concentration increasing, the concentration of Fe(2+,3+)in the leaf andFe(2+,3+), Mg2+in the branch had no significant effect, but other mineral ion concentration inother organs had influence in some extent. The concentrations of Mg2+and Ca2+in the leaf,Na+and Ca2+in the branch, Na+and Ca2+and Mg2+in the stem, Na+and Mg2+in the rootincreased significantly, but Na+in the leaf, Fe(2+,3+)in the stem and root, Ca2+in the root haddecreased significantly. The ratios of Fe(2+,3+)/Na+、Mg2+/Na and Ca2+/Na+in the leaf,Ca2+/Mg2+in the branch, Mg2+/Fe(2+,3+)、Ca2+/Fe(2+,3+)in all organs increased gradually,however, Fe(2+,3+)/Na+, Mg2+/Na+and Ca2+/Na+in the branch and stem and root, Ca2+/Mg2+inthe leaf and stem and root decreased gradually. Except root to stem, SMg, Fefrom stem to branch,SCa,Mgfrom branch to leaf decreased significantly under the elevated CO2concentration. otherorgan ions upward transporting ability changed or increased significantly. The study showedthat elevated CO2enhanced more Na+accumulation in the root, up selective transporting abilityof Fe(2+,3+), Ca2+and Mg2+, elevated the mineral nutrient concentrations in the leaf, andmaintained the balance of mineral elements. thereby elevated concentration of CO2couldincrease the adaptation capacity of Ph. edulis in high CO2concentration environment.(6) Physiology responses of Phyllostachys edulis Leaves to elevated atmospheric O3and CO2concentrationAfter30d of exposure, elevated O3could stimulate the activity of anti-oxidation and thecontent of osmotic adjusting substances, which can balance reactive oxygen species production,resulting in no significantly increase in malondialdehyde content. Along with the decline of antioxidant, intense the damage to membrane lipid and destroy the structure of cell membrane.Short-term treatment of high concentration of CO2on membrane lipid peroxidation andantioxidant system in the leaves of Ph. edulis effect was not evident, and long-term treatmentof high concentration of CO2would increase the antioxidant ability of Ph. edulis andosmotic adjustment function in a certain extent, and thus, alleviate the oxidative stress. Incombination of elevated CO2and O3, the leaves of Ph. edulis could maintain high levels ofantioxidant enzymes and osmotic adjustment substances content to effectively regulate reactiveoxygen species generation and clearing balance. The results indicated that elevated CO2couldameliorate the oxidative stress in some extent.

节点文献中: 

本文链接的文献网络图示:

本文的引文网络