节点文献

无碱驱油用三嗪类两性表面活性剂的研究

Studies on Alkylbetaine Surfactants Derived from S-Triazine in Alkali-free Enhanced Oil Recovery

【作者】 彭欢

【导师】 乔卫红;

【作者基本信息】 大连理工大学 , 精细化工, 2012, 硕士

【摘要】 本论文设计并合成了十个均三嗪两性羧基甜菜碱表面活性剂BCn-m,研究了它们的结构与性能间的关系,探究了所合成表面活性剂与烷烃、大庆二厂、四厂原油间的界面活性与其结构的关系,并与相应的均三嗪磺酸盐表面活性剂作了对比,为驱油用表面活性剂的分子设计提供了一定的参考。首先,以均三嗪、氯乙酸钠、脂肪胺和N,N-二甲基-1,3-丙二胺为原料,通过分子设计合成了系列对称和不对称的双长链均三嗪羧基甜菜碱表面活性剂BCn-m。采用电喷雾质谱、飞行时间质谱、红外光谱、核磁共振1HNMR和13CNMR表征了它们的结构正确。研究了所合成均三嗪两性羧基甜菜碱表面活性剂的表面活性和界面活性。疏水链总碳数在16~22之间的表面活性剂呈现高的表面活性,其γcmc比其它表面活性剂低了5-20mNm-1;BC8-8、BC10-8、BC12-8、BC14-8、BC10-10和BC12-10的最低烷烃/水界面张力接近或在10-3mN m-1数量级,表面活性剂浓度增大时,烷烃/水的平衡界面张力和界面张力达到平衡的时间都变小;加入NaCl后,烷烃/水的平衡界面张力和界面张力达到平衡状态所需时间都变大;BC8-8、BC10-8和BC12-8在较宽浓度范围能使大庆二厂原油和大庆四厂原油油水界面张力降至10-2~10-3mN m-1甚至更低数量级;温度升高,BC8-8、BC10-8和BC12-8的界面活性增大;加入电解质时BC10-8与原油的平衡界面张力升高,而BC12-8与原油的平衡界面张力不同程度地降低;BC12-8与疏水碳链较短的表面活性剂复配时,其界面活性较高;BC12-8和BC10-8与聚丙烯酰胺有一定的配伍性;与Na2CO3复配时,体系的界面活性都升高。将均三嗪羧基甜菜碱表面活性剂BC8-8、BC10-8、BC12-8与相应的磺酸盐均三嗪表面活性剂进行了比较。它们的CMC和γcmc相近;它们与烷烃作用的耐盐性均较差;羧酸盐表面活性剂与大庆二厂原油间的界面活性更高。羧酸盐表面活性剂的耐温性、耐高浓度电解质性、同系物复配体系的稳定性、与聚丙烯酰胺的配伍性均好于磺酸盐表面活性剂。

【Abstract】 This thesis has designed and synthesized ten kinds of carboxyl betaine surfactants derived from s-triazine. The relationship between surface activity and surfactant structure has been studied and the interface activities between the surfactants and alkane as well as crude oils from Daqing Plant2and Plant4have been explored. Comparison with corresponding sulfonate triazine surfactants has made to provide guidance for molecular design of flooding surfactants.Firstly, in this paper, symmetric and asymmetric-chain carboxyl betaine s-triazine surfactants BCn-m have been synthesized through molecular design with s-triazine, sodium chloroacetate, fatty amines and N,N-dimethyl-1,3-propanediamine as raw materials. As a result, the structures of the products are confirmed by mass spectrometry, infrared spectroscopy, and nuclear magnetic resonance1HNMR and13CNMR.Surface activity and interface activity of the synthesized surfactants have been explored. Surface activity of surfactants with total carbon numbers of hydrophobic chains in the range of16to22are better, its γcmc is5~20mN m-1lower than that of other surfactants. Interface activity between the s-triazine surfactants and alkanes/crude oil is the research focus. Study shows that the lowest alkane/water interfacial tensions of BC8-8, and BC10-BC12-8BC14-8, BC10-10and BC12-10are close to10-3mN m-1. As the surfactant concentration increases, alkane/water interfacial tension and equilibrium time of dynamic interfacial tension are smaller. Alkane/water interfacial tension and equilibrium time of dynamic interfacial tension grows larger after the addition of NaCl. In a wide concentration range, the oil-water interfacial tensions between BC8-8, BC10-8, BC12-8and Daqing Plant2crude oil and Daqing plant4crude oil are down to10-2~10-3mN m-1. As the surfactant concentration increases, the equilibrium time of dynamic interfacial tension becomes shorter time, and the equilibrium interfacial tension increases first decreased and then increased, existing an optimal surfactant concentration. BC8-8, BC10-8and BC12-8exhibit temperature tolerance ability. After adding electrolyte, interfacial tension between BC10-8and crude oil increased while that of BC12-8reduced to some extents. BC12-8mixed with surfactants of shorter hydrophobic carbon chain show higher interfacial activity. Mixed system of BC12-8, BC10-8with Na2CO3show higher interfacial activity Lastly, comparision between BC8-8, BC10-8, BC12-8and corresponding sulfonate triazine surfactants were made. It shows that the carboxylate and sulfonate triazine surfactants exhibit poor salt tolerance while interacting with alkane. While interacting with Daqing Plant2crude oil, compared with sulfonate surfactants, carboxylate surfactants show greater temperature resistance, better electrolyte resistance, higher stability of the homologue complex systems and polyacrylamide.

节点文献中: 

本文链接的文献网络图示:

本文的引文网络