节点文献

一维苝类衍生物微纳结构的可控制备及性质研究

Preparation of One-dimensional Micro-nano Structure of Perylene Derivatives and Their Properties

【作者】 袁瑞建

【导师】 周少敏;

【作者基本信息】 河南大学 , 高分子化学与物理, 2012, 硕士

【摘要】 有机半导体材料由于质轻、价廉和种类繁多,同时结构及性能可通过分子设计进行调整等优点而受到人们广泛的重视,推动着分子电子学的快速发展。一维有机单晶微纳结构具有许多新颖性质,在光电领域具有重要的应用前景,其研究受到越来越多的关注。本论文研究一维苝类衍生物微纳结构材料的气相控制生长和光电、气敏特性、探索一维微纳结构-性能之间的关系和其潜在的应用。主要内容如下:1.简单介绍有机半导体材料的研究现状和面临的困难,分析苝类衍生物在电子器件中的应用和现存的问题,并以此为基础,明确提出了本论文的选题、意义和主要研究内容。2.利用物理气相沉积技术得到一维结晶性良好的单晶苝类衍生物(PTCDA, PTCDI,PTCDI-Cl4)微纳结构材料。分析不同形态的一维苝类衍生物微纳结构的形成机制:依靠不同的基片温度,不同气氛压力下分子一维方向的自组装的机理。采用位电场组装方法得到单根PTCDA和PTCDI纳米线光电器件,探讨光照对其电流的影响,发现不同材料器件的响应和回复时间有着较大的差别。3.通过合理的气相条件控制获得不同尺寸的方形微纳管。通过粉末X-射线衍射(XRD)分析,对于已制备的方形微纳管,原料和样品存在着晶型转变(β-相→α-相)。探索其样品的形成机制提出可能的模型:层状结构卷曲闭合成管。对其气敏性质的研究,采用掩板的方法构筑顶接触模式的单根PTCDA纳米线气敏器件,在暴露5ppm水合肼蒸气中,测量不同直径管样品对该气体响应的电阻-时间变化曲线,显示2个数量级的下降,并且随着直径的减小呈现出快速响应。推测其中可能影响因素:(1)水合肼电子给体吸附在管的表面促使其复合中心的电荷分离;(2)电子在一维结构的微纳管分子堆积长轴间的π电子离域传导;(3)不同直径的管,其比表面积有着显著的不同。4.基于对苝类衍生物气相制备条件的探索,结合当前有机半导体在光电领域的应用,制备了PTCDA阵列微纳结构材料和ZnO/PTCDA复合材料,并对比研究了复合材料的紫外-可见光吸收,期望后者能在性能优异的光电器件中得到潜在应用。

【Abstract】 Organic semiconductors materials have received widely attentions in molecular electronics due totheir inherent advantages such as light weight, low cost, mechanical flexibility and tunable functionality bymolecular design. Organic1-D nanomaterials based on low-molecular-weight semiconducting organiccompounds are of interest because they possess unique properties for use in electronic, optoelectronic, andphotonic nanodevices. Here, we focus on the controllable growth of perylene derivatives, optoelectronicdevices and their gas sensitivities associated performance, exploring the structure-property relationship andtheir potential applications.1. We introduced the present research backgrounds of organic semiconductor materials and N-type ofperylene derivatives application in electronic devices, and their status of single crystal preparationtechnology and built a photoelectricity and gas sensing function devices. Therefore, we deduced theresearch objectives and the main research contents in our future works.2. We described the synthesis of excellent crystal perylene derivatives (PTCDA, PTCDI, PTCDI-Cl4)micro-nanostructure materials by the physical vapor deposition (PVD) technique, analysis of the gas phaseself-assembled rely on different dominant interactions are responsible for the different forms of organicmicro-nanocrystal structure formation is temperature-activated process. The UV detectors based deviceswere fabricated by aligning single PTCDA and PTCDI nanowire across paired Au electrodes usingdielectrophoresis.and discusses the different diameter, light intensity on the optical current effect,discovered the different material device response and recovery time is different.3. We report the preparation of3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA)micro/nanotubes (M/NTs) by a simple physical vapor deposition (PVD) process, and it was found thattubular structures with a diameter range from300nm to5μm and lengths up to tens of micrometers wereobtained on a glass substrate at a deposition temperature of350-400°C. Detailed studies revealed thatPTCDA M/NTs were formed via a curling and seaming of a2-D lamellar structure constructed by virtue ofthe cooperation of some noncovalent interactions such as π–π interaction and H-bond, which was atemperature-activated process. Devices based on single PTCDA microtubes with different diameters exhibited resistance decreased by2orders of magnitude in reducing hydrazine vapor (even for such a lowconcentration of5ppm). Such a successful application of PVD process to simple organic molecules andhighly efficient performance in devices are expected to provide great opportunities for the formation ofdiverse functional organic hollow nanostructures.4. Based on perylene derivative gas phase control of preparation conditions of exploration, consideringour studies on the organic semiconductor optoelectronic applications, we try to PTCDA array andZnO/PTCDA composite material preparation, and composite materials were studied by light absorption, inthe hope that the excellent performance of the photoelectricity parts have potential applications.

  • 【网络出版投稿人】 河南大学
  • 【网络出版年期】2012年 09期
节点文献中: 

本文链接的文献网络图示:

本文的引文网络