节点文献

膜分离技术在工业含盐废水处理中的应用研究

The Study on Membrane Separation Technology Applied in Industrial Saline Wastewater Treatment

【作者】 门立娜

【导师】 林海波;

【作者基本信息】 吉林大学 , 物理化学, 2012, 硕士

【摘要】 膜分离技术是一种新型的分离技术,是利用选择透过性膜在化学位差或外界能量的作用下,对混合物中各组分进行分离和提纯的方法。膜分离技术作为一种高效的分离技术,在人们生活和生产的各个方面占有非常重要的地位,尤其在海水、苦咸水脱盐,工业含盐废水的回收利用等方面应用比较广泛。随着人口数量的剧增及社会经济的迅猛发展,水资源短缺现象日益加重,因此人们愈加重视生活污水和工业废水的处理及回收利用。目前已经深入研究和开发的膜分离法主要有反渗透(RO)、电渗析(ED)、渗析(D)、微滤(MF)、渗透蒸发(PV)、超滤(UF)、气体分离(GS)等等。本文将膜分离技术中的反渗透、电渗析、膜电解等技术应用于处理工业含盐废水当中,研究了膜分离技术在工业含盐废水回收利用中的效果和应用价值。(1)采用滴定分析法测得氯醇法环氧丙烷皂化废水中Ca2+浓度为0.2243mol/L,Cl-浓度为0.4400mol/L,预处理后的皂化废水中NaCl质量分数约为2%。模拟废水经反渗透处理一段时间后,浓水中NaCl的质量分数可以达到6%左右,淡水可作为工厂工艺用水。反渗透法处理1L该模拟废水消耗电能3.54×10-2kw·h。(2)以反渗透浓缩液作为电渗析实验起始溶液,经过四级电渗析,可以把NaCl质量分数约为6%的盐水浓缩至20%左右,处理1L该盐水直流电耗为2.81×10-2kw·h,实现了氯醇法环氧丙烷皂化废水的资源化利用。研究了不同工艺条件(槽压、初始盐溶液浓度、流速)对电渗析浓缩盐水效果的影响。其中槽压大小对电流效率影响较大,电流效率随着槽压的增大先增大后减小,在30V时电流效率最大,为65%。(3)利用三室膜电解法电解硫酸钠模拟废水,在阳极室成功得到了硫酸和氧气,在阴极室得到了氢氧化钠和氢气。通过正交实验得知在电流密度为30mA/cm2、Na2SO4浓度为1.4mol/L、电解时间为1h、流速为40L/h时阳极和阴极的电流效率最高,此时阳极电流效率为64.13%,阴极电流效率为83.16%。通过对实验条件的研究,考察了电流密度、硫酸钠浓度、电解时间、流速及离子交换膜种类等条件分别对阴、阳极反应电流效率和能耗的影响。

【Abstract】 Membrane separation technology is a new separation technology to separate andpurify the mixtures with a selective permeability membrane under the action of thechemical potential difference or external energy. Membrane separation technologyplays a very important role in various aspects of people’s lives as a highly efficientseparation technology, especially widely used in the desalination of sea water and therecycling of saline industrial wastewater. With the rapid increase and development ofthe population and the economic, shortage of water resources is becoming more andmore serious. So people pay more attention to the treatment of domestic sewage andindustrial wastewater. Membrane separation process can be divided into the reverseosmosis, electrodialysis, dialysis, microfiltration, pervaporation, ultrafiltration, gasseparation and so on. In this paper we use reverse osmosis, electrodialysis andion-exchange membrane electrolysis technology to treat different saline industrialwastewater and study the effect of these methods.(1)The titration result we measured in the propylene oxide saponificationwastewater is that the concentration of calcium ion is0.2243mol/L while theconcentration of chloride ion is0.4400mol/L. The mass fraction of sodium chloride inthe propylene oxide saponification wastewater is nearly2%after the pretreatment,and it can reach to6%by the reverse osmosis treatment for certain time. Theconductivity of the dilute water is so low that it can reach the standard of industrialwater. The desalination rate is97.81%, and the consumption of every one literwastewater is3.54×10-2kw·h.(2)We used the concentrate of the reverse osmosis process as the starting solutionof electrodialysis. We can concentrate it from6%to20%by electrodialysis consumed2.81×10-2kw·h one liter, which make the utilization of the wastewater a reality. We also studied the influence of different process conditions on the electrodialysis effect,such as voltage, the initial concentration and the flow rate. The size of voltage impactcurrent efficiency greatly. The current efficiency increases with the voltage firstincreases, and then decreases. It rise to65%when the voltage is30V.(3)In this part the splitting of sodium sulfate was performed in athree-compartment membrane electrohydrolysis cell, combining commercial cationand anion exchange membranes. We can get sulfuric acid and oxygen in the anode,sodium hydroxide and hydrogen at the cathode at the same time. By the orthogonalexperiment we found the experimental conditions for the highest current efficiency:current density of30mA/cm2, sodium sulfate concentration of1.4mol/L, electrolysistime of1hour. Under such conditions, the anodic current efficiency is64.13%whilethe cathodic current efficiency is83.16%. We also studid the effect of the currentdensity, concentration of sodium sulfate, electrolysis time, flow rate, and the type ofion exchange membrane on the current efficiency and energy consumption.

  • 【网络出版投稿人】 吉林大学
  • 【网络出版年期】2012年 10期
节点文献中: 

本文链接的文献网络图示:

本文的引文网络