节点文献

胺、酰胺类阴离子识别受体的设计及其光谱性质的理论研究

Study on Design,Synthesis and Properties of Amines and Amides Anion Recognition Receptor

【作者】 刘佳

【导师】 王炳强;

【作者基本信息】 山西师范大学 , 化学, 2012, 硕士

【摘要】 阴离子广泛存在于我们生活的每一个角落,因此对于阴离子在生命活动和环境改造的过程中的影响作用的研究越来越受到人们的重视。同时它还是很好的氢键受体,所以基于氢键作用的新型阴离子识别受体的设计已经成为现在研究的发展主流。提高阴离子识别的灵敏度是我们设计阴离子识别受体需要考虑的关键因素。但是究竟如何能够达到这些要求还是比较困难的,因此新型阴离子受体的研究到目前为止仍然是一项具有挑战性的工作。阴离子的识别位点存在方式有很多,但是目前研究的最多的则是由胺类、酰胺类、脲类等等一些能够形成氢键的基团构成。正是由于这些物质中都存在极化的N—H基团,N—H基团可以与含有孤对电子的阴离子相互作用形成氢键,因此被广泛的应用于阴离子识别受体的设计中。胺类、酰胺类衍生物在自然界中广泛的存在,并且是肽链的基本的结构,通过形成氢键影响着很多复杂的生命现象。所以胺、酰胺类受体分子作为氢键的质子供体,他们在阴离子识别过程以及研究过程中发挥着重要的作用。为了进一步的研究阴离子识别受体的氢键作用,本文设计了一系列以胺、酰胺中的N—H基团作为阴离子结合位点的八种受体分子。将这八种受体分子分别与Cl离子相互作用,结果都形成了非常稳定的氢键复合物。同时本文还采用B3LYP/aug-cc-pVDZ的方法对这些结构进行优化和频率计算。根据计算结果对电荷转移、复合物的稳定性以及结构参数变化的规律进行讨论。同时本次研究过程中,还进一步探索了不同取代基对阴离子识别受体分子的灵敏度存在什么程度的影响。此外,我们还在优化结构的基础上采用TD /B3LYP /aug-cc-pVDZ的计算方法得到各种物质的最大的吸收波长。主要内容概括如下:(一)我们分别将这八种复合物的结构进行优化计算,优化结果显示均为氢键构型。根据计算的几何参数的数值,我们发现:在这些氢键复合物中,电荷发生转移,N—H之间的距离都稍稍的有所增长。另外,根据NBO分析结果,我们得出结论:当N—H···Cl-氢键强度越强时,质子给予体和接受体的分子间的电荷迁移的数量就越多。并且我们还可以看出,复合物的稳定性与电荷迁移量的大小存在着一定的关系,也就是说电荷迁移的数量越大,则复合物的稳定性也随着电荷迁移量的增大而增强。(二)我们分别对这两类氢键复合物的作用能进行计算与比较,结果发现:苯环上取代基的吸电子的能力的大小能够改变胺、酰胺受体分子对阴离子的结合能力。苯环对位取代基引入某些强拉电子基(如硝基等),不仅可以增强受体分子中NH的质子酸性,还能够提高受体对阴离子的结合能力。同时我们也得到了结论:受体分子中有苯环的参与或者是苯环对位为吸电子基团时复合物的形成就变得更加的容易。(三)我们对氢键进行了NBO分析,NBO分析认为复合物的次级稳定化能(ΔΕ2)主要由n(4)Cl/σ*(N—H)电荷跃迁引起的,并且由ΔΕ2最大值来支配的。(四)我们利用TD /B3LYP /aug-cc-pVDZ得到最大的吸收波长。结果表明:阴离子与受体分子间的相互作用,进一步使得受体分子内的电荷转移现象发生的更加明显,同时也进一步促进了整个分子的共轭体系明显的增强。此外本次实验中形成的所有的阴离子复合物,它们的最大吸收波长处的吸收光谱均发生红移。在氢键结合位点附近引入吸电子能力较强的基团时,进一步极化了氢键给体,同时使得受体分子的给质子能力得到相应的提高,进而发生吸收光谱红移的现象。

【Abstract】 Anions play an important role in biological sciences andenvironmental chemisty. Most of the anions are good hydrogenbonding receptors. Design and synthesis of new anion recognitionreceptors have become more and more interesting. Improvingselectivity and sensitivity of anion recognition should be the keyfactors to consider in the design process. So far, the designing ofnew anion receptor is still a challenging job. Hydrogen bonding isone of the interactions in anion recognition. The anion receptorscontaining N—H groups, for example, polyamines, ureas, pyrazolesand amides etc, have been paid much attention and have beenwidely used in the design of the anion recognition receptors andsensors.In order to further understanding the hydrogen bondinginteraction between N—H groups and anions, this paper designed aseries of amine and amides as prototypes of hydrogen donor inhydrogen-bond complex. The geometry optimizations (acceptormolecule and hydrogen bonding complexes) were performed, usingB3LYP/aug-cc-pVDZ method. According to the calculation results,the strength of hydrogen bonding, the charge transfer (between accepter and the doner) and harmonic frequency were investigated.Based on the TD/B3LYP/aug-cc-pVDZ level, we got the absorptionspectra of these complexes. The hydrogen bonding interactioncaused a red shift in the absorption spectra.Main content summed up as follows:(a). We optimized the geometries of the complexes of Cl-withthe amines and amides. All of receptor molecules and Cl-werehelded together by hydrogen bonding. In all hydrogen bondingcomplexes, N—H bond lengths were slightly increased.(b). The substituents can change the acidity of N—H group inamines and amides. Introducing some strong pull electronic group(-NO2), the hydrogen bond between host and anion was graduallystrengthened. And N—H acidity of the molecules in the host wasincreased, and this is helpful to complex formation.(c). Based on NBO analysis, the stabilization energy of thecomplexes was determined by the maximum value of theΔΕ2caused by the electron transition of the n(4)Cl/σ*(N—H). The N—H…Cl-hydrogen bonds between the Cl-and amines ( amides) moleculespresent a charge transfer from the lone pairs of the proton acceptorto the antibonding orbitals of N—H bonds. At the same time, theamount of charge transfer were significant different. In addition,NBO analysis indicates that a stronger hydrogen bond in N—H…Cl-results in more charge transfer between the hydrogen bond donorand acceptor molecules. The more charge transfer was, the morestable complexes were.(d). Using the TD/B3LYP/aug-cc-pVDZ, we calculated theabsorption spectra. As shown by the calculated, a large shift of the maximum absorption wavelengths. The formation of hydrogenbonds promoted the infamolecular charge transfer, and increasedrigidity of the structure. Introducing strong pull electronic groups,the red shift phenomenon became more obvious.

  • 【分类号】O621.13
  • 【被引频次】1
  • 【下载频次】89
节点文献中: 

本文链接的文献网络图示:

本文的引文网络