节点文献

液压挖掘机的主从控制研究

Research on Master-Slave Control System for Hydraulic Excavators

【作者】 朱晓军

【导师】 徐兵;

【作者基本信息】 浙江大学 , 机械电子工程, 2012, 硕士

【摘要】 一直以来,工程机械如挖掘机、装载机、起重机等都是通过单杆机液手柄对执行器的速度控制来使设备动作,进而完成各种作业。这种传统的操作方式缺乏直观性,对驾驶员的操作水平要求较高。本文以多自由度力反馈手柄PHANTOM Omni和工程机械液压挖掘机为研究对象,以现有的多自由度挖掘机机械臂操控实验台为基础,构建了挖掘机的主从式控制实验平台,实现了挖掘机的主从控制,且具有操作简单直观、可力觉感知等优点。实验表明该主从控制系统能实现挖掘机工作装置对力反馈手柄的轨迹跟踪,证明了这种控制方案的合理性与可操作性。论文的主要研究内容如下:第一章,介绍了主从控制技术与力反馈技术及其在工程机械领域的国内外研究现状,指出了本课题的研究目的和意义,概述了课题的主要研究内容。第二章,建立了挖掘机工作装置(包括回转)的运动学数学模型,在MATLAB/Simulink中进行了运动仿真与分析。利用该模型实现挖掘机工作空间包络图的快速准确自动化绘制。第三章,利用拉格朗日动力学方法建立了挖掘机工作装置的动力学数学模型,分别在MATLAB/Simulink和Solidworks/Cosmosmotion中进行了动力学仿真与分析。同时针对液压缸、连杆等其它杆件的影响,对模型做了进一步的分析与简化,以提高模型的准确性。第四章,详述了主从控制实验平台的结构框架及各组成部分的实现方式。在力反馈手柄数据采集程序Visual C++与主实时控制程序Matlab/xPC Target之间建立了基于UDP/IP的通讯接口。针对力反馈手柄与挖掘机之间的工作空间匹配问题提出了基于关节的空间匹配方式和基于位置增量的空间匹配方式。建立了挖掘机的虚拟现实系统,并利用虚拟现实对通讯和空间匹配方法进行了模拟与可视化仿真。第五章,针对基于关节的位置控制模式和基于位置增量的位置控制模式,采用改进的增量式PID控制算法对挖掘机主从控制系统的轨迹跟踪性能进行了实验研究,实验结果证明该主从控制系统能实现挖掘机工作装置对力反馈手柄的轨迹跟踪。第六章,对全文进行总结,并对下一步的研究工作进行了具体展望。

【Abstract】 Most construction machines such as excavators, loaders, cranes are operated with single lever mechanical-hydraulic joysticks in the way of speed control. The traditional way of operation is short of intuition and requires higher operation skills of the driver. In this thesis, a more intuitive operation named master-slave control system has been developed based on a multi-lever force feedback joystick PHANTOM Omni and the existing integrated multi-DOF test rig of 2 ton excavator. Experiments showed that the bucket can achieve a fine trajectory tracking with the master-slave control system, proving of this control scheme reasonable and feasible.The thesis is outlined as follows:In chapter 1, the master-slave control and force feedback technology were introduced. The current research progresses of its application in the field of construction machinery were reviewed all over the world. Then, the main research objective, significance and topics of the study in the thesis were pointed out and discussed.In chapter 2, the kinematic mathematical model of the 4-DOF excavator working device including swing was established. And a simulation model was built in Matlab/Simulink. Based on the analysis and simulation of kinematics, the working space diagram of the excavator can be get rapidly and exactly.In chapter 3, the dynamic mathematical model of the 4-DOF excavator working device was established using Lagrangian dynamics method. And then dynamic simulation and analysis were carried out both in MATLAB/Simulink and Solidworks/Cosmosmotion environment. As for the influence of the hydraulic cylinders and other link rods, the dynamic model was further analysised and simplified in order to improve the accuracy.In chapter 4, the structure of the master-slave control system and its main components were explained in details. Using socket programming, UDP/IP communication interface was established to exchange information between the PHANTOM software Visual C++ and the control program in Matlab/xPC Target environment. As for the workspace differences between PHANTOM Omni and the excavator, two kinds of workspace matching methods, which are based on joints and position increments, were proposed. A virtual reality monitoring system was also developped to make the simulation and operation visualized.In chapter 5, an improved PID control algorithm was introduced to test the trajectory tracking performance of the master-slave control system.The experimental results showed that this kind of operation mode is intuitive and simple and the bucket could track the position of PHANTOM Omni well.In chapter 6, some conclusions are given and some new views are put forward in the future.

  • 【网络出版投稿人】 浙江大学
  • 【网络出版年期】2012年 07期
节点文献中: 

本文链接的文献网络图示:

本文的引文网络