节点文献

Ti-Ni-Cr超弹性合金相变和形变特性研究

Study on Transformation and Deformation Characteristics of Ti-Ni-Cr Superelastic Alloy

【作者】 王启

【导师】 贺志荣;

【作者基本信息】 陕西理工学院 , 材料加工工程, 2011, 硕士

【摘要】 本文以Ti-50.8Ni-0.3Cr(原子%)形状记忆合金(SMAs)为研究对象,用X射线衍射仪、示差扫描量热仪、拉伸实验、光学显微镜和电子显微术研究了退火和时效工艺对该合金相变、形变行为和显微组织的影响。结果表明:退火温度Tan对Ti-50.8Ni-0.3Cr合金的相变行为有着显著影响。Tan=350~450℃时,合金发生A→R/R→A型可逆相变;Tan=500℃时,合金发生A→R→M/M→R→A型相变;Tan=550~600℃时,合金发生A→R→M/M→A型相变;Tan=650~800℃时,合金不发生相变。随时效时间tag延长,300℃时效态合金的相变类型为A→R/R→A,400℃时效态合金发生由A→R/R→A向A→R→M/M→R→A转变,500℃时效态合金发生由A→R→M/M→R→A向A→R→M/M→A转变。随Tan升高,合金的R相变温度TR先升高后降低,M相变温度TM升高,M相变热滞ΔTM降低。合金经300~500℃时效后,TR400>TR300>TR500。随tag延长,TR、TM先快速升高后趋于稳定,ΔTM先快速降低后趋于稳定。另外,退火和时效态合金的R相变热滞ΔTR均在4℃左右。在退火处理过程中,由于Ti-50.8Ni-0.3Cr合金的供货态为冷加工态,退火时将发生回复与再结晶。Tan=350~500℃时,合金为回复阶段,显微组织仍呈纤维状;Tan=550~580℃时,合金发生再结晶,纤维组织逐渐变成无畸变等轴晶粒;Tan=590~800℃时,为晶粒长大阶段,显微组织为粗大且大小不均匀的晶粒;随Tan升高,合金的应力诱发马氏体临界应力σM先降低后升高,随后趋于稳定;残余应变εR在Tan=350~590℃时变化不大,始终保持在较低的水平,当Tan>590℃时,则急剧升高。另外还可以得出,合金的开始再结晶温度在570℃左右,要使该合金获得良好的超弹性,退火温度应低于再结晶温度。在固溶时效处理过程中,800℃固溶淬火态合金塑性良好,适合于冷成形加工。随时效时间tag延长,300℃和400℃时效态合金的抗拉强度σb300和σb400先急剧增大后趋于稳定,且σb300b400,延伸率δk300和δk400先急剧减小后趋于稳定;500℃时效后,σb500先急剧减小后趋于稳定,δk500先急剧增大后趋于稳定。随tag延长,300℃和400℃时效态合金的应力诱发马氏体临界应力σM300和σM400均逐渐减小,而σM500则先减小后增加再减小,极大值在tag=10h时取得。此外,随tag延长,300℃时效态合金的Ti3Ni4析出相呈细小颗粒状弥散分布;400℃时效态合金的Ti3Ni4析出相由颗粒状演变成透镜状;500℃时效态合金的Ti3Ni4析出相发生由透镜状向针状再向粗片状演变。时效温度对Ti3Ni4析出相形态的影响效果比时效时间显著。随试验温度Td的升高,退火和时效态Ti-50.8Ni-0.3Cr合金弹簧的应力诱发马氏体相变临界切应力τM均逐渐升高;其中,随Tan的升高,τM先降低后升高;随tag延长,300℃时效态合金弹簧的τM逐渐降低。随循环次数N增加,合金弹簧应变恢复率先快速衰减,后趋于稳定;预循环可增强弹簧元件SE的稳定性。

【Abstract】 Effects of annealing and aging treatment on transformation, deformation and microstructure of Ti-50.8Ni-0.3Cr(% atomic fraction)Shape Memory Alloys (SMAs) were investigated by X-ray diffraction, differential scanning clorimetry, tensile test, optical microscopy and electonic microscopy in this paper. The results are as follows.A→R/R→A type reversible transformation occurred in 350~450℃annealed alloy upon cooling/heating, A→R→M/M→R→A occurred in 500℃annealed alloy, A→R→M/M→A occurred in 550~600℃annealed alloy, and no transformation occurred in the above 650℃annealed alloys. With increasing aging time, the transformation type of 300℃aged alloy is A→R/R→A, the one of 400℃aged alloy is from A→R/R→A to A→R→M/M→R→A, and the one of 500℃aged alloy is from A→R→M/M→R→A to A→R→M/M→A. With increasing Tan, the R transformation temperature TR increases first and then decreases, the M transformation temperature TM increases, and the M temperature hysteresiseΔTM decreases. After aging at 300~500℃, the TR400>TR300>TR500. With increasing tag, the TR and TM increases first and then tend to stable, and theΔTM decreases first and then tend to stable. Futhermore, the R temperature hysteresis in the annealed and aged alloys is all about 4℃.The Ti-50.8Ni-0.3Cr alloys took place the recovery and the recrystallisation procedure during annealing treatment due to the cold working as recived. When Tan =350~500℃, the alloy is at the recovery procedure, the microstructure is fibriform; when Tan =550~590℃, the alloy is at the recrystallisation procedure, the microstructure turns to the unstrained equi-axed grains; When Tan =600~800℃, the alloy is at grain growth procedure, the microstructure became larger and asymmetrical grain. With increasing Tan, the critical stress for inducing martensiteσM descends firstly and then rises; when Tan =350~590℃, the residual strainεR has no obvious change and keeps at a low value all the time. When Tan >590℃, theεR rises rapidly. Furthermore, the recrystallisation temperature of the alloy is about 570℃. In order to getting excellent SE, the annealing temperature of the alloy should be below recrystallization temperature. After solution and aging treatment, the 800℃solution annealed Ti-50.8Ni-0.3Cr alloy exhibits well plasticity and is advantaged to cold deformation. With increasing tag, the tensile strengths (σb300 andσb400) of 300℃and 400℃aged alloys increase sharply firstly and then tend to a stable value, here,σb300b400; the % elongationδk300 andδk400 decrease sharply firstly and then tend to stable. After aging at 500℃, theσb500 decreases sharply firstly and then tends to stable, theδk500 increases sharply firstly and then tends to stable. With increasing tag, the critical stress for inducing martensitic transformationσM300 andσM400 of 300℃and 400℃aged alloys decrease gradually, whileσM500 decreases firstly and then increases sharply, finally decreases gradually again and the maximum is reached at tag=10h. Furthermore, with increasing tag, the morphology of Ti3Ni4 precipitates of 300℃aged alloy is fine particle shape; the one of 400℃aged alloy evolves from particle to lenticular shape; the one of 500℃aged alloy evolves from lenticular to needle to plate shape. The influencing of the aging temperature on the morphology of Ti3Ni4 precipitates is more significant than that of the aging time.With increasing the test temperature Td, the critical shear stress for inducing martensitic transformationτM of both the annealed and aged Ti-50.8Ni-0.3Cr alloy spring increase gradually; with increasing Tan, theτM decreases firstly and then increases; with increasing tag, theτM of 300℃aged alloy spring decreases gradually; with increasing the stress-strain cycles numbers N, the strain recovery ratio declines quickly at the beginning and then slowly.

节点文献中: 

本文链接的文献网络图示:

本文的引文网络