节点文献

磁共振图像处理算法的研究

Research on Magnetic Resonance Image Processing Algorithms

【作者】 张丽琴

【导师】 程科;

【作者基本信息】 江苏科技大学 , 计算机应用技术, 2011, 硕士

【摘要】 磁共振成像技术由于具有成像参数多、分辨率高、无电离辐射损伤、可任意层面断层成像等特点而在医学上得到广泛的应用。但是,磁共振图像也具有成像时间长、软组织对比度不高、成像有噪声、有伪影等缺陷,这些缺陷严重阻碍了磁共振成像技术的推广和发展。为了克服磁共振图像的这些缺陷,本文从磁共振图像的增强和伪影校正这两个方面来展开对磁共振图像处理算法的研究。在磁共振图像的增强方面,本文对基于尺度相关性的阈值处理方法进行改进,实现对磁共振图像的增强。考虑到在同一幅图像中,图像的去噪、增强这两种操作会相互影响,造成图像的质量下降,基于磁共振图像的特点,本文对图像像素点按相似度区别对待,对当前基于小波多尺度积的图像增强算法进行改进,采用一种基于尺度相关性的阈值处理方法来对磁共振图像进行增强操作。实验证明,该方法能够在有效增强图像的同时,抑制甚至消除图像中的噪声。在磁共振图像伪影校正算法的研究上,本文将运动伪影分为平移运动伪影和旋转运动伪影两种,并分别进行研究。在平移运动伪影的校正方面:采用一种基于能量约束的方法,实现磁共振图像平移运动伪影的校正。在深入分析磁共振图像特点的基础上,提出基于能量约束的平移运动伪影校正算法,选取方向信息测度和磁共振图像非目标区0值像素点个数的组合作为能量约束函数。通过与目前研究较为成熟的自动逆向迭代校正算法进行对比实验,可知,本文算法在平移运动伪影的处理上,具有一定的优势。在旋转运动伪影校正方面:采用基于稀疏采样成像的方法,实现磁共振图像快速序列旋转运动伪影校正。考虑到磁共振图像旋转运动伪影的K空间数据被校正后,会出现数据分布不均匀的情况,若使用插值方法对数据空间进行填充,因填充方法的不同,会导致图像的重建效果不同,因此,本文选用稀疏采样成像方法。K空间数据具有变换稀疏性,可使用小波变换对K空间数据进行变换,得到具有稀疏性的数据空间,再进行稀疏采样成像。实验证明,本方法能够有效地校正磁共振图像的旋转运动伪影,且图像重建效果较好。

【Abstract】 Magnetic resonance imaging technique is applied widely because this technology has lots of features such as multi-imaging parameters, high resolution, non-invasive and arbitrary slice imaging, etc. However, this technology also has some defects such as required a long time during imaging, the images of soft tissue are low contrast, and lots of images have noise or artifacts. The spread and development of the magnetic resonance imaging technique are obstructed by these defects. In order to conquer those defects, this paper provides related processing algorithms on image enhancement and artifact correction.Firstly, in enhancement aspect, this paper improved a threshold processing algorithm based on scale dependencies to enhance the image. Consider in the same image, this paper considering that these two operations of image noise inhibition and enhance will affect each other, and lead to the image quality decline. Based on the characters of magnetic resonance image, according to the similarity between pixels this paper adopts a method that deal with the pixels differently, improve the enhancement algorithm on the basis of wavelet multi-scale product, using a threshold processing method based on the scale correlation to enhance the magnetic resonance image. The experiments show that this method can enhance the image effectively, and can inhibit and even eliminate the noise of the image at the same time.And then, two motion artifacts including translational motion artifact and rotational motion artifact are studied respectively. In the aspect of translational motion artifact, this paper adopts a method based on energy constraint to correct the artifact. On the basis of character analysis of the magnetic resonance image, this paper raised a algorithm based on energy constraint. This algorithm chooses direction information measure and the number of 0 pixels in the target zone of the magnetic resonance image as the energy function. Compare to the automatic reverse iterative algorithm, experiments show that this algorithm has certain advantages on correction of translational motion artifact. In the aspect of rotational motion artifact correction, this paper using a method based on sparse sampling to correct the rotating motion artifact of fast sequential magnetic resonance. Considering that after the correction of the K-space data, the data distribution will be uneven. Interpolation methods are often used to fill the data space, but the effect of the reconstruct image will change with different methods. Therefore, this paper selects sparse sampling imaging methods. K-space data has sparseness after transformation, in order to achieve sparse data space, we can use wavelet transform to transform the K-space data, then use the sparse sampling imaging. Experiments have proved that this method can correct the rotating motion artifact of magnetic resonance imaging effectively, and the effect of image reconstruction is good.

节点文献中: 

本文链接的文献网络图示:

本文的引文网络