节点文献

纳米结构材料对于光场响应的研究

Responsibility of Optlcal Fleld in Nano-Stractured Materials

【作者】 池黎明

【导师】 李向亭;

【作者基本信息】 上海交通大学 , 光学, 2011, 硕士

【摘要】 新型光电信息功能材料,包括其设计、性能、制备以及加工过程中的新思路、新发现、新方法、新技术,长期以来一直材料领域的研究热点。具有新特性的信息光电材料的研究和开发对于电子科技产业、经济发展和国家综合国力的提升具有重要战略意义。纳米材料是纳米科学技术的一个重要的发展方向。纳米材料是指由极细晶粒组成,特征维度尺寸在纳米量级(1~100nm)的固态材料。由于极细的晶粒,大量处于晶界和晶粒内缺陷的中心原子以及其本身具有的量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应等,纳米材料与同组成的微米晶体(体相)材料相比,在催化、光学、磁性、力学等方面具有许多奇异的性能,因而成为材料科学和凝聚态物理领域中的研究热点。本文所涉及的研究课题的研究重点在于研究纳米材料结构在均匀光场或点光源的照射下表现出的新型光电特性。本文的主要研究对象分两大类:一是以半导体-金属结(MS结构)为典型的多层膜结构。这种结构对于特定波长的激光将表现出的侧向光伏效应及导波效应;二是嵌入式金属结构。这种结构是将金属以块状的形式嵌入到另一种电介质中,电介质可以随需要而改变,必要的时候可以是空气或是真空。嵌入式结构在均匀光场的照射下会表现出定位聚焦光场能量的作用。对于多层膜结构,本文研究了一种新型的灵敏位移探测器(PSD),这种探测器基于金属-半导体(MS)结构。文中提到的样品由硅衬底、自然氧化层和一层金膜构成,其在位移探测方面表现出很高的灵敏度和很好的线性。不但如此,样品产生的侧向光伏(LPV)会随着光入射角的变化而变化,预示着这样的结构在波导制作方面有着很大的潜在应用前景。对于嵌入式结构,本文提出了时间反演方法来控制等离子纳米系统中能量最强点的位置。该方法是基于纳米系统中对某一点局域超短脉冲激发的远场的时间反演。尽管在金属等离子系统中存在很强烈的干扰和严重的相位移动和分散,并且所作的时间反演并不完整,但是该方法在控制纳米尺度的光场能量时十分有效,可应用于纳米分光镜、光学调制、超密信息存储和纳米信息处理等领域。

【Abstract】 Novel Photoelectronic Materials, including its design, performance,preparation and processing of new ideas, new discoveries, new methods,new technologies, has long been hot in the materials research field.Information with new properties and development of photoelectronicmaterials technology for the electronics industry, economic developmentand enhance overall national strength has important strategic significance.Study on nano-materials is one of the important developments innano-science and technology. Nano-material is solid material which iscomposed by extremely small grains and its feature dimension size isnano-meter scale(1-100nm). Compared with micron crystal materials,there are many strange performance in catalytic, optics, magnetic, andmechanics due to these small grains, huge amounts of center-atoms incrystal boundary and crystal grains and its quantum size effect, small sizeeffect, surface effect, and macroscopic quantum tunneling effect. Nanomaterialshave been focused in the field of materials science andcondensed matter physics.Two kinds of Photoelectronic nano-materials are studied in thispaper. One is the multilayer structure. Metal-semiconductor structure (MSstructure) is one of the typical multilayer structure. This material presents lateral photovoltage effect (LPE) and waveguide effect under theirradiation of typical laser. The other is the embedded-metal structure.This kind of structure focus the light field energy into the specific location.A novel position-sensitive detector (PSD) based on themetal–oxide–semiconductor (MOS) structure, which is simply fabricatedby an n-type Si substrate, a thin native SiO2 layer and an Au film, isreported in this work. This detector shows a large lateral photovoltage(LPV) with high sensitivity and good linearity. Furthermore, the LPV ofthis structure greatly depends on the incident angle of the light,suggesting some extra potential for the development of new types ofwaveguide-like devices.An approach has been introduced called time reversal to conherentlycontrol the position in which the optical energy localizes in plasmananosystems. This approach is based on the impulsive localized excitationof the nanosystem and time reversal of the generated far-zone field at asingle point with one polarization. Despite strong interaction andsignificant dephasing and dissipation in metal plasma systems, andincompleteness of this time reversal, the proposed approach proves to bevery efficient in controlling the nanoscale optical fields. The approachmay be applied in nanoscaless spectroscopy, optical modification,ultradensememory, and information processing on the nanoscale.

节点文献中: 

本文链接的文献网络图示:

本文的引文网络