节点文献

混合驱动水下机器人控制系统设计

Control System Design of the Hybrid Autonomous Underwater Vehicle

【作者】 王洪达

【导师】 张连洪;

【作者基本信息】 天津大学 , 机械制造及其自动化, 2010, 硕士

【摘要】 作为一种新型的水下机器人,混合驱动水下机器人具备螺旋桨驱动与浮力驱动两套驱动系统,兼有水下自航行器(Autonomous Underwater Vehicle,简称AUV)和水下滑翔器(Autonomous Underwater Glider,简称AUG)的优点。在螺旋桨驱动模式下,具有航行速度快、机动性好的优点;当以浮力驱动模式航行时,具有航程大,隐蔽性好的优点。与传统的水下机器人相比,混合驱动水下机器人的运动形式更加复杂。因此,其控制系统节点较多,复杂程度较高,工作环境复杂,对可靠性提出更高的要求。本文以自主研发的混合驱动水下机器人PETREL为依托,设计了融合AUV控制和AUG控制的分布式控制系统。本文的主要研究内容及成果如下:1.针对复杂水下环境对通讯的不利影响,本文设计了基于串口和CAN总线的水下机器人复合分布式控制系统,该系统避免了串口和水下机器人内部CAN总线的相互干扰,更加适合多传感器及多末端执行机构的水下机器人。2.混合驱动水下机器人核心控制单元和单元功能模块设计。本文采用ARM7微控制器LPC2292设计了核心控制单元,使整个系统具有可扩展性和互换性。在此基础上,设计了电源管理系统,螺旋桨推进系统,姿态控制系统,变浮力系统等单元功能模块。3.结合模糊PID控制器,对PETREL的航行控制策略进行了研究,包括航行轨迹跟踪策略、姿态保持策略以及意外处理策略。以上策略的应用,大大增强了系统的鲁棒性,改善了动态响应特性,使得PETREL能够有效的完成航行及测量任务。4.对核心控制单元及各基础单元模块进行了详细的单元实验研究,验证了系统的功能。一系列的水域实验验证了本文研究的PETREL控制系统的可行性、可靠性。

【Abstract】 The hybrid autonomous underwater vehicle is a new type of autonomous underwater vehicle which propelled both by buoyancy and propeller. It has the respective advantages of AUV and AUG. In propeller driven model, it has the advantage of higher maneuverability and velocity. However, in buoyancy-driven model, it has long endurance and low noise. The motion characteristics of hybrid autonomous underwater vehicle are more complex than traditional. Thus, the control system is much more complicated which need of higher reliability.Based on independently developed hybrid autonomous underwater vehicle PETREL, this paper designed the distributed control systems of AUV and AUG. The main research and contributions of this thesis are summarized as follows:1. The distributed control system based on serial port and CAN bus are designed which can reduce the adverse effects of complex underwater environment. This control system avoids the mutual interference of serial port and CAN bus, so it is appropriate for autonomous underwater vehicle with multiple sensors and executing agencies.2. The design of core control unit and function modules. The core control unit with excellent expansibility and interchangeability is designed based on ARM7 LPC2292. Then function modules of power management system, propeller system, attitude control system and variable-buoyancy system are designed.3. Based on fuzzy PID controller, the control strategy of PETREL is studied, including trajectory tracking strategy, attitude control strategy and exceptions handling strategy. It is verified that this control system is robust and can effectively complete navigation and measure missions.4. A series of unit experiments are carried out to validate the function of control system. The lake trials verified the feasibility and reliability of PETREL’s control system.

  • 【网络出版投稿人】 天津大学
  • 【网络出版年期】2012年 02期
节点文献中: 

本文链接的文献网络图示:

本文的引文网络