节点文献

酶-CdSe-TiO2光/酶混合生物燃料电池

Hybrid Photoelectrochemical Biofuel Cell with Enzyme-CdSe-TiO2 Architecture

【作者】 崔岩

【导师】 刘绍琴;

【作者基本信息】 哈尔滨工业大学 , 生物医学工程, 2010, 硕士

【摘要】 随着对太阳能开发的不断深入,染料敏化的太阳能电池(dye-sensitized solar cells, DSSCs)因具有低成本、环境友好和较高的光电转换效率等特性在众多光电转换装置中脱颖而出,成为近几年研究的热点。为了进一步地提高染料敏化太阳能电池的光电转换效率和长期稳定性,各种染料被用于敏化纳米结构的宽能隙半导体TiO2电极。其中,量子点(quantum dots, QDs)敏化的太阳能电池,因具有较大地发展潜力而被广泛研究。本论文采用静电层层自组装(electrostatic layer-by-layer self-assembly, LBL)技术,将量子点与[Co(Phen)3]2+或PAH有序组装到TiO2薄膜基底上,成功构建了CdSe@CdS量子点敏化的TiO2光电极。其中,LBL技术制备的量子点敏化的TiO2光电极,包括两种类型的纳米膜结构:ITO/TiO2/(CdSe@CdS/PAH)n (简称为Ⅰ型膜)和ITO/TiO2/(CdSe@CdS/[Co(Phen)3]2+-PEI)n (简称为Ⅱ型膜)。多种光谱研究表明CdSe@CdS量子点成功地被组装到TiO2薄膜基底的表面,并且沉积的量均匀,成膜质量好。其光电检测的结果表明,当组装层数较低时,两种类型光电极的光电性能均随着量子点多层的组装层数的增加而增强;当层数进一步增加时,光电性能反而降低。此外,Ⅱ型膜结构的TiO2光电极虽然沉积较少的CdSe@CdS量子点,但光电性能要远高于I型膜结构的TiO2光电极。在此基础上,选取Ⅱ型膜结构的TiO2光电极,采用LBL技术在其表面组装葡萄糖氧化酶/[Co(Phen)3]2+-PEI多层,成功制备了CdSe@CdS量子点敏化薄膜和酶膜复合的光/酶混合生物燃料电池的光电阳极。其具有良好的光伏特性,150 W氙灯照射下,产生显著的光电流,并且对光具有良好的即时电流响应。此外,当在PBS电解液中加入葡萄糖时,光电流强度显著增强,且其随葡萄糖浓度的增加而增加。而当葡萄糖浓度大于8 mM时,随着葡萄糖浓度的增加,电流强度几乎不变,即8 mM葡萄糖为饱和浓度。

【Abstract】 Recently, dye-sensitized solar cells (DSSCs) are extensively studied due to their special features such as low cost, surrounding friendly and high power conversion efficiency in recent year. One of very interesting of DSSCs is quantum dots (QDs) -sensitized solar cells, which have drawn a lot of attention during the past few years because semiconductor quantum dots feature long-term stability, sizable adsorption from UV to the infrared, a tunable band structure and even charge carrier multiplication.In this thesis, using the layer-by-layer (LBL) assembly, we assembled the dispersed CdSe@CdS core-shell QDs over mesoporous TiO2 matrix. Two types of photoanodes were obtained by choosing different polyelectrolyte: Type 1 films ITO/TiO2/(CdSe@CdS/PAH)n and Type 2 films ITO/TiO2/(CdSe@CdS/ [Co(Phen)3]2+-PEI)n. The multilayer build-up, monitored by UV-vis spectroscopy shows an increase in the film absorbance with the number of adsorbed CdSe@CdS layers. The photoluminescence (PL) and photoelectrochemical properties of the multilayers were investigated. The photoelectrochemical measurements showed that the photocurrent is directly proportional to the quantity of attached QDs. Moreover, the performances of Type 2 electrodes are much higher than that of Type 1 electrodes.Further, the photoanode of hybrid photoelectrochemical biofuel cell was fabricated by depositing three bilayers of GOD/[Co(Phen)3]2+-PEI on the Type 2 multilayer films. The photoanode can remarkably generate the photocurrent under the illumination with a power of 150 W. Moreover, upon the addition of glucose, the photocurrent was remarkably enhanced. The photocurrent increases with increasing concentrations of glucose in PBS (20 mM, pH=7.4) electrolyte and reached at maximum at a glucose concentration of 8 mM.

节点文献中: 

本文链接的文献网络图示:

本文的引文网络