节点文献

三次对称群上的群环的零因子图

Zero-divisor Graphs of Group Rings of the Symmetric Group on Three Letters

【作者】 覃庆玲

【导师】 易忠;

【作者基本信息】 广西师范大学 , 基础数学, 2011, 硕士

【摘要】 群环的零因子图的研究涉及到数学中许多领域:环论,群论,半群论,域论,图论和初等数论等.如此众多的学科交叉在一起,使它不但具有吸引力和趣味性,而且也有许多内在的困难.使用图的性质研究代数系统,已成为近20年来数学研究的一个热点问题,引发了很多有趣的结果和问题.本文分为五个部分,第一部分为引言,第二至第四部分各为一章,是本文的核心,最后部分是小结以及进一步研究的问题.第一章中我们概述了零因子图发展的历史,研究现状以及本文的研究背景,同时我们还给出了环论和图论的一些基本的概念.第二章中我们研究了群环ZnS3的零因子,并对ZnS3的有向零因子图Γ(ZnS3)的直径、围长进行了较为具体的刻画.这些结果对我们后面的研究是非常有用的.本章的主要结果已经在《广西师范大学学报》12(4)(2010)上发表.主要结果如下:定理2.3设Zn为模n剩余类环,S3为3次对称群,R=ZnS3,则R的零因子为定理2.4设Zn为模n剩余类环,S3为3次对称群,R=ZnS3,n>1,则(1)diam(Γ(R))=2(?)n=3t,t≥1;(2)diam(Γ(R))=3(?)n≠3t,t≥1.定理2.5设Zn为模n剩余类环,S3为3次对称群,R=ZnS3,n>1,则gr(Γ(ZnS3))=3.定理2.6设Zn为模n剩余类环,S3为3次对称群,R=ZnS3,n>1,则Γ(ZnS3)是非平面图.第三章在第二章的基础上,将环推广到任意的非零有限交换环R上,我们对群环RS3的代数性质及其结构进行了研究,给出了较为具体的刻画,并对RS3的零因子图的直径、围长、平面性进行了刻画.主要结果有:定理3.4设R为特征为pr的有限环,S3是三次对称群,若(p,2)=(p,3)=1,则diam(Γ(RS3))=3.定理3.6设R为有限环,S3为三次对称群,则qr(Γ(RS3))=3.定理3.7设R为有限环,S3为三次对称群,则Γ(RS3)为非平面图.第四章将三次对称群推广到m次对称群,当p(?)m!时,对ZpSm做一些有意义的探索,初步刻画了ZpSm的代数结构,并对其围长及平面性进行了具体的刻画.定理4.2设Zp为模p剩余类环,Sm为m次对称群,当p(?)m!时,有ZpSm≌Zp(?)Zp(?)△(Sm,Am)定理4.4设Zn为模n剩余类环,Am为m次交错群,若m≥4,则gr(Γ(ZnAm))=3.定理4.5设Zn为模n剩余类环,Sm为m次对称群,若m≥3,则gr(Γ(ZnSm))=3.定理4.7设Zn为模n剩余类环,Am为m次交错群,若m≥4,则Γ(ZnAm))为非平面图.定理4.8设Zn为模n剩余类环,Sm为m次对称群,若m≥3,则Γ(ZnSm)为非平面图.

【Abstract】 The study of the zero-divisor graphs are related to many areas:ring theory,group theory, semigroup theory,field theory,graph theory and elementary number theory. So many subjects intercross,make it fascinated and attracted,but also inherent dilemmas.The study of algebraic structures,using properties of graphs,has become an exciting research topic in the last twenty years,leading to many fascinating results and questions.This paper is composed of five parts,where the first part is the introduction,the second to the forth in which each part is a chapter are the core of the paper,and the last part is the further research problems.In Chapter 1 of this paper,we summarize the history and current situation of the zero-divisor graph,the research background of this paper.At the same time,we gave some notations of ring theory and graph theory.In Chapter 2,we will determine the zero-divisors of ZnS3,and discuss the girth and diameter of the directed zero-divisor graphΓ(ZnS3).The main result has been published in Journal of Guangxi Normal University 12(4)(2010).These results will be very useful in the following chapters,and they are as following:Theorem 2.3 Let Zn be the modulo n residue class ring,S3 be the symmetric group on three letters,R=ZnS3,then the zero-divisors of R are(1)If n=2,then D(R)={α∈R││supp(α)│=0,2,3,4,6},│D(R)│=52;(2)If n=3,then D(R)={α=x1+x2b+x3ab+x4a2b+x5a+x6a2│xi∈Z3,x1+x5+x6≡x2+x3+x4(mod 3),or (?)xi≡0(mod 3)},│D(R)│=405;(3)If n=p,p>3 is a prime number,then ZpS3≌Zp⊕Zp⊕M2(Zp),and D(Zp⊕Zp⊕M2(Zp))-{(α1,α2(?))│at least one ofα1 andα│D(ZpS3)│=3p5-2p4-2p3+3p2-p;(4)If n=pt,t>1,then ZptS3/IS3≌ZpS3.D(ZptS3=D(ZpS3)+IS3,in which I={0,p,2p,…,(pt-1-1)p}is the unique maximal ideal of Zpt;(5)If n=p1r1p2r2…p3r3,ri≥1,s≥2,then R≌Zp1riS3⊕Zp2r2S3⊕…⊕Zp3r3S3, D(Zp1riS3⊕Zp2r2S3⊕…⊕Zp3r3S3)={(α1,α2,…,αs)│αi∈ZpiriS3,at least one ofαi∈D(ZpiriS3),i=1,2,3,…,s}. Theorem 2.4 Let Zn be the modulo n residue class ring, S3 be the symmetric group on three letters, R=ZnS3,R=ZnS3,n>1, then(1) diam{Γ(R))=2(?)n=3t,t≥1;(2) diam(Γ(R))=3(?)n≠3t,t≥1.Theorem 2.5 Let Zn be the modulo n residue class ring, S3 be the symmetric group on three letters, R=ZnS3, n>1, then gr(Γ(ZnS3))=3.Theorem 2.6 Let Zn be the modulo n residue class ring, S3 be the symmetric group on three letters, R=ZnS3, n>1, thenΓ(ZnS3) is non-planar.In Chapter 3, we generalize the residue class ring to arbitrary finite ring R, we determine the algebraic proposition and structure of RS3, and discuss the girth and diameter of the directed zero-divisor graphΓ(RS3). The main results are:Theorem 3.4 Let R be a finite ring of characteristic pT, S3 be the symmetric group on three letters, if (p,2)=(p,3)=1, then diam(Γ(RS3))=3.Theorem 3.6 Let R be a finite ring, S3 be the symmetric group on three letters, then gr(r(RS3))=3.Theorem 3.7 Let R be a finite ring, S3 be the symmetric group on three letters, thenΓ(RS3) is non-planar.In Chapter 4, we generalize the symmetric group on three letters to m letters, when p│m!, we make some meaningful exploration of ZpSm, and discuss the girth and planarity. The main results are:Theorem 4.2 Let Zp be the modulo p residue class ring, Sm be the symmetric group on m letters, if p│m!, then ZpSm≌Zp⊕Zp⊕△(Sm, Am)Theorem 4.4 Let Zn be the modulo n residue class ring, Am be the alternative group on m letters, if m≥4, then gr(Γ(ZnAm))=3.Theorem 4.5 Let Zn be the modulo n residue class ring, Sm be the symmetric group on m letters, if m≥3, then gr(Γ(ZnSm))=3.Theorem 4.7 Let Zn be the modulo n residue class ring, Am be the alternative group on m letters, if m≥4, thenΓ(ZnAm)) is non-planar.Theorem 4.8 Let Zn be the modulo n residue class ring, Sm be the symmetric group on m letters, if m≥3, thenΓ(ZnSm) is non-planar.

【关键词】 对称群群环零因子图直径平面性围长
【Key words】 Symmetric groupGroup ringZero-divisor graphDiameterPla-narityGirth
节点文献中: 

本文链接的文献网络图示:

本文的引文网络