节点文献
磁控电弧传感器有限元分析及优化设计
Finite Element Analysis and Optimum Design for Magnetic-control Arc Sensor
【作者】 王哲情;
【导师】 洪波;
【作者基本信息】 湘潭大学 , 材料加工工程, 2011, 硕士
【摘要】 焊接作为一种先进制造技术,广泛应用于能源、造船、电子、交通与航天工程等领域,要解决实际生产中生产效率不高、工人劳动强度较大等问题,则必须实现焊接的自动化。而焊缝的自动化跟踪是实现自动化焊接所需解决的关键问题,在整个焊缝跟踪系统当中,传感器是最为重要的部分。本文旨在对磁控电弧传感器进行研究,并且进行优化设计,改善其性能,使其制造成本更低,焊缝跟踪精度更高。首先,研究了磁控电弧传感器的原理和结构,结合磁控电弧传感器的设计,建立了磁控电弧传感器的有限元分析模型。第二,对磁控电弧传感器进行了谐波磁场分析。分别改变线圈匝数、空气隙长度、铁芯磁导率、铁芯直径、激磁频率等因素,得出了其对应的磁力线图和磁场矢量图,并得出了各个因素对磁控电弧传感器的磁场分布和磁感应强度大小的影响规律。第三,验证了有限元分析的可行性。通过高斯计分别测量线圈匝数、空气隙长度、激磁频率等为一固定值时,磁控电弧传感器电弧区域内10个节点的磁感应强度的大小,并与有限元分析得出的对应的数据进行对比。第四,验证了有限元分析得出的结论的正确性。分别改变线圈匝数、空气隙长度、激磁频率等因素,通过高斯计测量对应的因素发生改变时,选定的固定节点的磁感应强度的大小,从而得出线圈匝数、空气隙长度、激磁频率等改变时,对应的磁感应强度的变化规律,然后与通过有限元分析得出的变化规律进行比较。最后,对磁控电弧传感器进行了优化设计。以降低磁控电弧传感器的制造成本为目标函数,通过有限元软件ANSYS对其进行优化设计,并比较优化前后的焊缝跟踪精度等性能。
【Abstract】 As a kind of advanced manufacturing technology, welding is widely used in energy, shipbuilding, electronics, transportation and aerospace engineering, etc.But the production efficiency is low, and the level of labor intensity is high.So it is necessary to realize welding automation. Its key problem is seam tracking,and the sensor is the most important part in the seam tracking system. This paper attempts to research and optimize the magnetic-control arc sensor, improve its performance, reduce the cost of manufacture,and enhance the seam tracking precision .Firstly, researched the principle and structure of the magnetic-control arc sensor, combined with the magnetic-control arc sensor, builded the finite element modeling of the magnetic-control arc sensor.Secondly, analysised the magnetic-control arc sensor. Separately changed coil turns, air gap length, core magnetic conductance, core diameter, excitation frequency, concluded the corresponding magnetic maps and magnetic vector diagram.And concluded its influence law of the magnetic field distribution and the magnetic induction.Thirdly, verified feasibility of finite element analysis.In the arc region ,measured the magnetic induction of 10 nodes by guass meter when coil turns, air gap length, excitation frequency as a fixed value, and compared with the data gained by finite element analysis.Fourthly, verified correctness of the conclusion by the finite element analysis. Separately changed coil turns, air gap length, excitation frequency and so on, measured the magnetic induction of the selected node by guass meter, concluded the corresponding rules of magnetic induction when separately changed coil turns, air gap length, excitation frequency, then compared with the rules by finite element analysis. Finally, optimized the magnetic-control arc sensor. In order to reduce its cost of manufacture, optimization designed the magnetic-control arc sensor by ANSYS ,and compared with the seam tracking precision of the magnetic-control arc sensor before optimized.
【Key words】 magnetic-control arc; sensor; finite element analysis; magnetic field; optimization design;