节点文献

高炉开铁口机钻削系统及整机仿真研究与优化

Simulation and Optimization on Drilling System and the Whole Blast Furnace Taphole Machine

【作者】 吴淑峰

【导师】 张建华;

【作者基本信息】 山东大学 , 机械制造及其自动化, 2011, 硕士

【摘要】 钢铁行业作为国民经济的基础产业,是国家综合国力和经济水平的重要体现。近年来,随着钢铁行业的快速发展,对高炉炼铁技术以及炉前设备提出了更高的要求。高炉炉前设备能否持续、高效、安全工作直接影响到炼铁的生产效率与钢铁行业的发展。然而,作为炉前重要机械设备之一的开铁口机目前存在着钻具系统寿命短、开口效率低、炉前生产成本高等问题,这些问题已经成为制约钢铁行业发展的因素之一,需要有效地解决。本课题作为“济钢全液压开铁口机项目”的一个子课题,主要针对济钢集团炉前开铁口机目前存在的问题提出改进与优化方案,提高开铁口机的工作效率,降低炉前的生产成本。首先对开铁口机钻凿系统中的连接形式进行改进,采用新型整体式的连接套连接形式代替原有的分体式连接套连接形式。借助运动学与动力学分析软件ADAMS对改进前后的能量传递过程进行仿真分析,并且对炉前现场数据进行了统计,结果表明整体式的连接套减少了源动力在传递过程中的能量损失29.5%,提高了开铁口机的工作效率。运用有限元分析软件ABAQUS对开铁口机钻具进行了温度场模拟,分析结果表明开铁口机钻具在工作环境中的高温对钻具的影响较大。为了对钻具有效地冷却,研究开发了一种雾化水冷却系统。生产现场使用情况表明,该系统可以在开铁口机工作过程中对钻削系统进行有效冷却,提高了开铁口机的工作效率,减少易损件的使用量,降低生产成本。同时,减少了粉尘排放量,改善了炉前的工作环境,具有推广应用价值。对开铁口机工作过程中的钻头受力进行了理论分析,并借助于运动学与动力学分析软件ADAMS对钻头的受力进行了仿真分析;在有限元分析软件ABAQUS中建立了钻头的有限元模型,将动力学分析结果和温度场作为载荷施加到模型上进行了有限元仿真分析,得到了钻头在工作过程中的应力与变形情况。分析结果表明钻头失效主要是因为钻刃脱落,并据此设计了一种新型钻头。对全液压开铁口机进行了机械零部件的测绘,建立了开铁口机的整机模型。运用ADAMS软件对开铁口机的工作过程进行了运动学与动力学仿真研究,测出各主要约束副的受力情况,并对开铁口机的主要承力部件进行了强度校核。结果表明,各部件的最大应力都远远低于材料的许用应力,符合设计要求。

【Abstract】 As the basic industry of the national economy, steel industry is an important manifestation of the comprehensive national strength and the economic level. In recent years, the development of Steel-Making calls higher request on the blast furnace ironmaking technologies and equipments. Whether or not the equipments work continuously, efficiently and safely impacts the production efficiency and the steel and iron profession development. As one of the most important mechanical equipment, the taphole drilling machine have many problems, such as the short life, low efficiency and high production costs. These problems have become an important factor in the development of steel industry. So these problems need to be solved well. As a sub-project in the Jinan Iron and Steel hydraulic taphole drilling machine project, this project mainly proposes improvement and optimization to raise efficiency and decrease the cost of production.The connection type in the drilling system of tap hole drills used in blast furnace is improved and optimized. The integration connection is used to replace the separate sets connection. Use ADAMS software to actualize dynamics emulate analysis of the driving energy transmission process and the data of produce locale is collected. The result shows that using the integration connection reduces the loss in the driving energy transmission process and the work efficiency is increased.ABAQUS Finite Element Analysis Software is used to simulate the thermal condition to obtain the temperature distribution field of the drill. It is known that the high temperature affects the drill a lot. To get around the cooling problem of drills, a spray cooling system is developed successfully. According to the actual situation at the scene, the spray cooling system could cool the drill system effectively and raise the working efficiency. The use of vulnerable parts and production cost is reduced obviously. At the same time, the spray cooling system reduces the dust emissions and improves the working condition.Theoretical analysis and dynamics emulate analysis of taphole drilling machine drill force using ADAMS software is taken. The finite element model is established in ABAQUS software. The dynamics analysis result and temperature field is put on the model as load and the finite element analysis is taken. The stress and deformation condition is obtained. According to the analysis result, the main reason to the drill failure is the drop of drill lip. As to this reason, a new type of drill is designed to reduced the production cost.The parts of taphole drilling machine are surveyed and drawn and the complete appliance model is established. The kinematical and dynamical analysis of the working process is taken using ADAMS software. The stress state of the joints is obtained. It applies the finite element analysis to make strength check, the result satisfies the strength requirement.

  • 【网络出版投稿人】 山东大学
  • 【网络出版年期】2012年 04期
节点文献中: 

本文链接的文献网络图示:

本文的引文网络