节点文献

基于三种新型复合纳米材料的H2O2电化学生物传感器研究

Investigation on Electrochemical Biosensors Based on Three Types of Composite Nanomaterials

【作者】 赵红叶

【导师】 郑建斌;

【作者基本信息】 西北大学 , 分析化学, 2011, 硕士

【摘要】 当今基于新型纳米材料及复合纳米材料构置高灵敏、高选择性的电化学生物传感器是生物电分析化学研究的热点之一。本论文基于三种新型复合材料构置了三种H202电化学生物传感器,采用循环伏安法、电化学阻抗法、计时安培法及扫描电镜技术对其进行了表征,研究了氧化还原蛋白质(酶)的直接电化学和电催化特性,建立了检测H202的新方法。该研究丰富了生物电分析化学的研究内容,拓展了复合纳米材料的应用范围。全文共分三章,内容如下:1、综述了电化学生物传感器的研究进展情况,提出了本论文的研究内容及意义,引用参考文献113篇。2、构置了基于纳米碳酸钙的H202电化学生物传感器,研究了Hb的直接电化学和电催化特性,建立了检测H202的新方法。结果表明,循环伏安图上出现了Hb的一对峰形良好、准可逆的氧化还原峰,其式量电位为-0.295 V;电子传递速率常数(ks)为1.98 s-;Hb对H202具有良好的电催化作用,催化电流与H202浓度在5.0×10-6-1.3×10-3mol·L-1范围内呈线性关系,灵敏度为0.16AM-1cm-2,检出限为1.6×10-6mol·L-1;表观米氏常数KMapp为8.17×10-4mol·L-1。3、构置了基于聚苯乙烯和多壁碳纳米管的H202电化学生物传感器,研究了HRP的直接电化学和电催化行为,建立了检测H202的新方法。研究表明,循环伏安图上出现了HRP的一对峰形良好、准可逆的氧化还原峰,其式量电位为-0.400 V;电子传递速率常数(ks)为1.15 s-1;催化电流与过氧化氢浓度在5.0×10--7-8.2×10-4mol·L-1范围内呈线性关系,检出限为1.6×10-7mol·L-1。表观米氏常数KMapp为6.64x10-4mol·L-1。4、构置了基于二氧化硅和四氧化三铁纳米粒子的H202电化学生物传感器,研究了Hb的直接电化学和电催化行为,建立了检测H202的新方法。结果表明,循环伏安图上出现了Hb的一对峰形良好、准可逆的氧化还原峰,其式量电位为-0.195 V;其电子传递速率常数(ks)为1.54 s-1;电极响应时间小于2s;Hb对H202具有良好的电催化作用,催化电流与H202浓度在1.0×10-7-1.7×10-3mol·L-1范围内呈线性关系,检出限为3.3×10-8mol·L-1;表观米氏常数KMapp为8.12×10-4mol·L-1。与本论文构置的其他二种过氧化氢电化学传感器相比,该传感器具有灵敏度高、线性范围宽、选择性好等优点。

【Abstract】 Nowadays the construction of novel electrochemical biosensor with high sensitive and selective sensing interface based on new nanomaterials and nanocomposite has become one of the research subjects for analysts. In this thesis, three types novel hydrogen peroxide biosensor were fabricated based on three types of nanocomposite, which was characterized by cyclic voltammetry, electrochemical impedance spectroscopy, chronoamperometry and scanning electron micros copy. After which the electrochemical behaviors of redox protin (enzyme) were studied in details and the new methods for determination of H2O2 were developed. These studies enriched the study of biological electroanalytical chemistry, expanding the scope of the application of nanocomposites. The thesis was divided into three chapters and presented as follows:1. A review on the eleetroehemieal sensor and its researeh progress was presented with 113 referenees.2. A hydrogen peroxide biosensor based on nanoCaCO3 was fabricated and the direct electrochemistry and electrocatalysis of Hb at the electrode was investigated. The results showed that the biosensor displayed a pair of well defined redox peaks with the formal potential (E0’) of-0.295 V. The electron transfer rate constant (ks) was estimated to be 1.98 s-1. The biosensor also exhibited excellent electrocatalytic activity to H2O2. The linearity range for determination of H2O2 is from 5.0x10-6 to 1.3×10-3mol·L-1, with a sensitivity of 0.16 AM-1cm-2 and a detection limit of 1.6×10-6mol·L-1. The apparent Michaelis-Menten constant was calculated to be 8.1×10-4mol·L-1.3. A Hydrogen peroxide biosensor based on PS-MWCNT composite was fabricated and the direct electrochemistry and electrocatalysis of HRP at the electrode was investigated. The results showed that the biosensor displayed a pair of well defined redox peaks with the formal potential (E0’) of-0.400 V. The electron transfer rate constant (ks) was estimated to be 1.15s-1 The biosensor also exhibited excellent electrocatalytic activity to H2O2. The linearity range for determination of H2O2 is from 5.0×10-7 to 8.2×10-4mol·L-1 with a detection limit of 1.6×10-7 mol·L-1. The apparent Michaelis-Menten constant was calculated to be 6.64×10-4mol·L-1.4. A Hydrogen peroxide biosensor based on Fe3O4 and SiO2 nanomaterials was fabricated and the direct electrochemistry and electrocatalysis of Hb at the electrode was investigated. The results showed that the biosensor displayed a pair of well defined redox peaks with the formal potential (E0’) of-0.195 V. The electron transfer rate constant (ks) was estimated to be 1.54 s-1. The biosensor also exhibited excellent electrocatalytic activity to H2O2. The response time is lower than 2s; the linearity range for determination of H2O2 is from 1.0×10-7 to 1.7×10-3 mol·L-1 with a detection limit of 3.3×10-8 mol·L-1. The apparent Michaelis-Menten constant was calculated to be 8.12×10-4 mol·L-1. Compare with other two hydrogen peroxide biosensor, this biosensor has the Characteristics like high sensitivity, wide linear range and good selectivity.

  • 【网络出版投稿人】 西北大学
  • 【网络出版年期】2011年 08期
节点文献中: 

本文链接的文献网络图示:

本文的引文网络