节点文献

微波硫灯的仿真设计及动态测试

【作者】 许丽梅

【导师】 曾葆青;

【作者基本信息】 电子科技大学 , 物理电子学, 2011, 硕士

【摘要】 微波硫灯是上世纪90年代研制出来的新型光源。它是一种无极电光源,是通过磁控管产生电磁场能量激励谐振腔中的氩气和硫粉产生等离子体而发光,其光谱和太阳光谱非常接近。与其他光源相比,微波硫灯具有光效高,显色性能好,光通量高,绿色环保等性能,因此非常适合在大面积的室内照明和室外照明中使用。广东美的集团对微波进行了自主研发,其生产的硫灯基本达到国际同等水平。然而,由于微波硫灯的成本、散热、稳定性等问题制约了它的发展,导致目前微波硫灯还不能被广泛的使用。本论文是基于美的集团研发的微波硫灯基础之上做的研究。本论文介绍了微波硫灯的背景和国内外发展动态,并对微波硫灯的组成结构及各部分作用作了详细的阐述。另外还从理论上对发光机理进行了研究。本人的工作主要有以下几个方面:1.对微波硫灯冷状态下的高频系统进行了仿真优化。通过仿真得到谐振腔和波导的电磁场分布,确定谐振腔的模式为TE111模,并对网罩壁烧黑现象原因进行了分析。通过对谐振腔的高度优化,得到当频率为2.458GHz时,在冷状态下灯泡周围的电场强度最大为3722V/m。此时谐振腔高度为131.5mm。对调谐块的尺寸优化得到调谐块尺寸为:宽21mm,厚度为9.5mm,高度为40mm时,灯泡周围电场强度达到3781V/m。2.对微波硫灯热状态进行动态测试。结合测试得到的输入驻波系数和微波硫灯的发光原理对微波硫灯的启动过程进行了研究,将微波硫灯的启动过程分为四个阶段:准备期、快速放电期、硫等离子体发光期和稳定期。分析了启动过程中的准备期和快速放电期对硫灯的磁控管以及网罩造成的影响,并分别提出了保护磁控管和网罩的解决方法。另外本文还针对微波硫灯散热困难,电源效率低等缺点,提出了采用开关电源代替双变压器电源并进行了对比测试,通过测试得到微波硫灯在开关电源下工作的性能比在双变压器电源下的性能更好。3.对微波硫灯进行了热状态仿真。根据热状态测试得到的驻波系数等参数对热状态下灯泡内等离子体的参数进行模拟仿真,使得模拟结果和实验结果一致时对应的等离子体参数即为热状态等离子体的等效参数。其等效值为:等离子体频率9.5GHz,碰撞频率12GHz.对微波硫灯热状态下最小反射系数的条件做了探索。

【Abstract】 Microwave sulfur lamp was a new light source developed in the 1990’last century. It’s a kind of electrodeless electrical light source which producing light by microwave energy inciting the argon and sulfur in the resonator to generate plasma .Compared with other light sources, microwave sulfur lamp light has many features such as high efficiency and good color performance, high luminous flux, green and environment protection, so it is suitable for large indoor lighting and outdoor lighting. Midea company has independently carried out the development of microwave sulfur lamp which has basically reached the International level. But due to the cost, heat elimination, stability and so on, have constrained its development, led to the t microwave sulfur lamp can not be widely used until now. This paper is based on the previous research of microwave sulfur lamp by Midea company. The background and the development at home and abroad of microwave sulfur lamp was described and the composition structure of the lamp and the role of all part are also Detail elaborated in this paper. In addition the mechanism of the illumination has researched. Main contents of this article include the following aspects:First, simulate and optimize the RF system of Microwave sulfur lamp at the cool state. From the distribution of electromagnetic field in the resonator, we can judge the mode is TE111. the reason of burning the resonator cavity is analyzed. Through optimizing the height of resonator, the electric field around the lamp reached to the maximum (3722V/m), when the frequency is 2.458GHz and the height is 131.5mm. Optimizing the size of the tuning block to gain the best size: width 21mm, thickness 9.5mm, height 40mm, for that the electric field around the lamp reach to 3788V/m.Second, measure the microwave sulfur lamp dynamically in the thermal state. According to the input the voltage standing wave ratio (VSWR) and the emitting principle of the lamp, the whole working process of the lamp can be divided into four phases as follows: preparation phase, quick discharge phase, sulfur plasma lighting phase and stable phase. From analysis of the result gain that the reflection of microwave energy is large in phases of preparation and quick discharge, at which will most likely damage the magnetron. We propose to use switching power to replace two-transformer power for the present product’s efficiency is low and it is hard to distribution heat. From the test we find that the performance of microwave sulfur lamp is better when powered by the switching power.Third, simulate the microwave sulfur lamp at the thermal state. The thermal state simulation is based on the parameter VSWR from the thermal state test. If the result of simulation is corresponding to the test result, then the parameter is the plasma equivalent parameter. We gain the equivalent parameter of plasma: plasma frequency 9.5GHz, collision frequency 12GHz. At last, we explored the best condition for the minimum reflection coefficient of microwave sulfur lamp.

【关键词】 微波硫灯光源等离子体仿真谐振腔
【Key words】 microwave sulfur lamplight sourceplasmasimulationresonator
节点文献中: 

本文链接的文献网络图示:

本文的引文网络