节点文献

一维纳米二氧化钛溶胶的制备及其光电化学性能

Preparation of One-dimensional Titanium Dioxide Sol and Photoelectrochemical Performance

【作者】 钱迪峰

【导师】 张青红;

【作者基本信息】 东华大学 , 纳米纤维及杂化材料, 2011, 硕士

【摘要】 二氧化钛溶胶在光催化薄膜、染料敏化太阳能电池、光电化学传感器等方面有着重要的应用前景。目前多种溶胶的制备方法中存在两个问题,一是溶胶的液相主要是乙醇等有机溶剂,二是溶胶中的胶粒为无定形二氧化钛。本论文主要通过解胶的方法获得水性锐钛矿相Ti02溶胶,并初步研究了所得溶胶在染料敏化太阳能电池和光电催化测定水溶液中的化学需氧量(COD)的光电化学性能,所取得主要结果有:1).通过沉淀-解胶-晶化的方法在无任何表面活性剂的情况下得到了高长径比的Ti02纳米棒。以无机钛盐为主要原料制备了沉淀,经过低温解胶制备透明的锐钛矿相二氧化钛溶胶。将溶胶进行水热处理,调节其结晶度与形貌,形成了直径6 nm,长径比大于5的纳米棒。将该溶胶浓缩,制备成光阳极,用于染料敏化太阳能电池。具有较高的光电转化性能(5-6%)。2).开发出pH值中性、不含腐蚀性或有机物的多孔电极修饰剂来取代TiCl4溶液有重要应用价值。本文采用自制的水溶性过氧钛酸为原料,通过水热法低温制备透明锐钛矿相溶胶。用P25作为配制二氧化钛浆料的主要原料,用丝网印刷的方法在FTO玻璃上制备了多孔TiO2电极。将低浓度溶胶内渗透到多孔氧化钛电极,改善了电极的内部连通性和表面结构。改性后的电极组装成染料敏化太阳能电池,其光电转换性能由2.8%提高到4.7%.3).将溶胶通过浸渍法在FTO与多孔二氧化钛层之间制备了阻挡层。结果表明,该溶胶形成的薄膜没有改变玻璃的透过率,不影响电极对光的吸收,有效地阻碍了电解质与导电玻璃的直接接触,最终电极的光电转化性能有原先的3.8%提高到4.9%。4).用丝网印刷和浸渍法在FTO上制备了多孔和溶胶-多孔两类TiO2薄膜,以葡萄糖为目标污染物,利用电化学工作站考察了电极的光电化学性能。测试结果表明,由于引入了溶胶,增加了TiO2纳米颗粒与基底的附着力,改善了TiO2颗粒与基底的欧姆接触,使得溶胶-多孔电极的电荷转移电阻远小于多孔电极,提高了光电催化电极的光电流。

【Abstract】 Titanium dioxide sol has very important applications in the photocatalytic film, dye-sensitized solar cells, photoelectro-chemical sensors, and so on. There are two problems in the current sol preparation methods:first, the solvent of sol is mainly organic solvents (such as ethanol); second, the sol particles is the amorphous titanium dioxide. This paper is a presentation of how to obtain the water-based anatase TiO2 sol by the peptization, and a preliminary study of the sol obtained in the dye-sensitized solar cells and photoelectro-chemical properties of chemical oxygen demand (COD) in the photoelectrocatalysis determination aqueous solution. The main results obtained are follows:We describe a peptization and hydrothermal process for the synthesis of nanorod-like anatase TiO2 nanocrystals with a high aspect ratio without any organic surfactants. Inorganic titanium salt as the main raw material to prepare the precipitation, after a low-temperature peptization to make the transparent anatase titanium dioxide sol. hydrothermal treatment for the sol, adjust its crystallinity and morphology, to form a nanorods of 6 nm diameter, aspect ratio is more than 5. Concentrate the sol to make the photoanode prepared for dye-sensitized solar cells. It has got more efficient photoelectric conversion performance (5-6%).Developed a pH value of the neutral, porous electrode modifier without corrosive or organic to replace the TiCl4 solution has an important application value. In this paper, the transparent anatase sol is prepared by self-made water-soluble peroxotitanium acid as percursor, through hydrothermal method at low temperature. Use P25 titanium dioxide slurry as the preparation of the main percursor, with the screen printing method to prepare the porous TiO2 electrodes on the FTO glass. The sol of low concentration infiltrates into porous titanium dioxide electrodes to improve the internal connectivity of the electrode and surface structure. Modified electrode is assembled into dye-sensitized solar cell, the photoelectric conversion is improved from 2.8% to 4.7%.The barrier layer is prepared by dip-coating method between the FTO and the porous titanium dioxide layer. The results show that the sol film did not change transmittance of the glass, did no effect on dye’s light absorption, effectively prevented direct contact between the electrolyte and the conductive glass, the final photoelectric conversion performance of the electrode was improved from the original 3.8% to 4.9%.Using screen printing and dip-coating method in the FTO preparated Two kinds of the porous and sol- porous TiO2 film; using glucose as the target pollutants, Photoelectrochemical properties was investigated by the electrochemical workstation. The results show that the introduction of the sol has increased the adhesion between TiO2 nanoparticles and substrate; improved the TiO2 particles and the base ohmic contact; made the charge transfer resistance of the sol-porous electrodes is much less than that of the porous electrodes; improved the photoelectrocatalysis Electrode’s photocurrent.

  • 【网络出版投稿人】 东华大学
  • 【网络出版年期】2011年 08期
节点文献中: 

本文链接的文献网络图示:

本文的引文网络